TPTP Axioms File: REL001-0.ax
%------------------------------------------------------------------------------
% File : REL001-0 : TPTP v9.0.0. Released v3.6.0.
% Domain : Relation Algebra
% Axioms : Relation algebra
% Version : [Mad95] (equational) axioms.
% English :
% Refs : [Mad95] Maddux (1995), Relation-Algebraic Semantics
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : Satisfiable
% Rating : ? v3.6.0
% Syntax : Number of clauses : 13 ( 13 unt; 0 nHn; 0 RR)
% Number of literals : 13 ( 13 equ; 0 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 3 con; 0-2 aty)
% Number of variables : 25 ( 0 sgn)
% SPC :
% Comments : tptp2X -f tptp:short -t cnf:otter REL001+0.ax
%------------------------------------------------------------------------------
cnf(maddux1_join_commutativity_1,axiom,
join(A,B) = join(B,A) ).
cnf(maddux2_join_associativity_2,axiom,
join(A,join(B,C)) = join(join(A,B),C) ).
cnf(maddux3_a_kind_of_de_Morgan_3,axiom,
A = join(complement(join(complement(A),complement(B))),complement(join(complement(A),B))) ).
cnf(maddux4_definiton_of_meet_4,axiom,
meet(A,B) = complement(join(complement(A),complement(B))) ).
cnf(composition_associativity_5,axiom,
composition(A,composition(B,C)) = composition(composition(A,B),C) ).
cnf(composition_identity_6,axiom,
composition(A,one) = A ).
cnf(composition_distributivity_7,axiom,
composition(join(A,B),C) = join(composition(A,C),composition(B,C)) ).
cnf(converse_idempotence_8,axiom,
converse(converse(A)) = A ).
cnf(converse_additivity_9,axiom,
converse(join(A,B)) = join(converse(A),converse(B)) ).
cnf(converse_multiplicativity_10,axiom,
converse(composition(A,B)) = composition(converse(B),converse(A)) ).
cnf(converse_cancellativity_11,axiom,
join(composition(converse(A),complement(composition(A,B))),complement(B)) = complement(B) ).
cnf(def_top_12,axiom,
top = join(A,complement(A)) ).
cnf(def_zero_13,axiom,
zero = meet(A,complement(A)) ).
%------------------------------------------------------------------------------