TPTP Axioms File: REL001+1.ax
%------------------------------------------------------------------------------
% File : REL001+1 : TPTP v9.0.0. Released v3.6.0.
% Domain : Relation Algebra
% Axioms : Dedkind and two modular laws
% Version : [Hoe08] axioms.
% English :
% Refs : [Mad95] Maddux, R. (1995), Relation-algebraic semantics
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 3 ( 3 unt; 0 def)
% Number of atoms : 3 ( 3 equ)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 0 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 4 avg)
% Maximal term depth : 7 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 0 con; 1-2 aty)
% Number of variables : 9 ( 9 !; 0 ?)
% SPC :
% Comments : Requires REL001+0.ax
%------------------------------------------------------------------------------
%---Dedekind law
fof(dedekind_law,axiom,
! [X0,X1,X2] : join(meet(composition(X0,X1),X2),composition(meet(X0,composition(X2,converse(X1))),meet(X1,composition(converse(X0),X2)))) = composition(meet(X0,composition(X2,converse(X1))),meet(X1,composition(converse(X0),X2))) ).
%---modular laws
fof(modular_law_1,axiom,
! [X0,X1,X2] : join(meet(composition(X0,X1),X2),meet(composition(X0,meet(X1,composition(converse(X0),X2))),X2)) = meet(composition(X0,meet(X1,composition(converse(X0),X2))),X2) ).
fof(modular_law_2,axiom,
! [X0,X1,X2] : join(meet(composition(X0,X1),X2),meet(composition(meet(X0,composition(X2,converse(X1))),X1),X2)) = meet(composition(meet(X0,composition(X2,converse(X1))),X1),X2) ).
%------------------------------------------------------------------------------