TPTP Axioms File: REL001+0.ax
%------------------------------------------------------------------------------
% File : REL001+0 : TPTP v9.0.0. Released v3.6.0.
% Domain : Relation Algebra
% Axioms : Relation Algebra
% Version : [Hoe08] axioms.
% English :
% Refs : [Mad95] Maddux, R. (1995), Relation-algebraic semantics
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 13 ( 13 unt; 0 def)
% Number of atoms : 13 ( 13 equ)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 0 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 3 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 3 con; 0-2 aty)
% Number of variables : 25 ( 25 !; 0 ?)
% SPC :
% Comments :
%------------------------------------------------------------------------------
%----Definition of Boolean algebra a la Maddux
fof(maddux1_join_commutativity,axiom,
! [X0,X1] : join(X0,X1) = join(X1,X0) ).
fof(maddux2_join_associativity,axiom,
! [X0,X1,X2] : join(X0,join(X1,X2)) = join(join(X0,X1),X2) ).
fof(maddux3_a_kind_of_de_Morgan,axiom,
! [X0,X1] : X0 = join(complement(join(complement(X0),complement(X1))),complement(join(complement(X0),X1))) ).
fof(maddux4_definiton_of_meet,axiom,
! [X0,X1] : meet(X0,X1) = complement(join(complement(X0),complement(X1))) ).
%----Definition of Sequential Composition
fof(composition_associativity,axiom,
! [X0,X1,X2] : composition(X0,composition(X1,X2)) = composition(composition(X0,X1),X2) ).
fof(composition_identity,axiom,
! [X0] : composition(X0,one) = X0 ).
fof(composition_distributivity,axiom,
! [X0,X1,X2] : composition(join(X0,X1),X2) = join(composition(X0,X2),composition(X1,X2)) ).
%----Definition of Converse
fof(converse_idempotence,axiom,
! [X0] : converse(converse(X0)) = X0 ).
fof(converse_additivity,axiom,
! [X0,X1] : converse(join(X0,X1)) = join(converse(X0),converse(X1)) ).
fof(converse_multiplicativity,axiom,
! [X0,X1] : converse(composition(X0,X1)) = composition(converse(X1),converse(X0)) ).
fof(converse_cancellativity,axiom,
! [X0,X1] : join(composition(converse(X0),complement(composition(X0,X1))),complement(X1)) = complement(X1) ).
%---Definition of Identities (greatest and smallest element)
fof(def_top,axiom,
! [X0] : top = join(X0,complement(X0)) ).
fof(def_zero,axiom,
! [X0] : zero = meet(X0,complement(X0)) ).
%------------------------------------------------------------------------------