TPTP Axioms File: QUA001^0.ax
%------------------------------------------------------------------------------
% File : QUA001^0 : TPTP v9.0.0. Released v4.1.0.
% Domain : Quantales
% Axioms : Quantales
% Version : [Hoe09] axioms.
% English :
% Refs : [Con71] Conway (1971), Regular Algebra and Finite Machines
% : [Hoe09] Hoefner (2009), Email to Geoff Sutcliffe
% Source : [Hoe09]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 26 ( 13 unt; 12 typ; 7 def)
% Number of atoms : 33 ( 17 equ; 0 cnn)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 43 ( 0 ~; 1 |; 4 &; 37 @)
% ( 1 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 2 avg; 37 nst)
% Number of types : 2 ( 0 usr)
% Number of type conns : 43 ( 43 >; 0 *; 0 +; 0 <<)
% Number of symbols : 14 ( 12 usr; 3 con; 0-3 aty)
% Number of variables : 27 ( 15 ^ 8 !; 4 ?; 27 :)
% SPC :
% Comments :
%------------------------------------------------------------------------------
%----Usual Definition of Set Theory
thf(emptyset_type,type,
emptyset: $i > $o ).
thf(emptyset_def,definition,
( emptyset
= ( ^ [X: $i] : $false ) ) ).
thf(union_type,type,
union: ( $i > $o ) > ( $i > $o ) > $i > $o ).
thf(union_def,definition,
( union
= ( ^ [X: $i > $o,Y: $i > $o,U: $i] :
( ( X @ U )
| ( Y @ U ) ) ) ) ).
thf(singleton_type,type,
singleton: $i > $i > $o ).
thf(singleton_def,definition,
( singleton
= ( ^ [X: $i,U: $i] : ( U = X ) ) ) ).
%----Supremum Definition
thf(zero_type,type,
zero: $i ).
thf(sup_type,type,
sup: ( $i > $o ) > $i ).
thf(sup_es,axiom,
( ( sup @ emptyset )
= zero ) ).
thf(sup_singleset,axiom,
! [X: $i] :
( ( sup @ ( singleton @ X ) )
= X ) ).
thf(supset_type,type,
supset: ( ( $i > $o ) > $o ) > $i > $o ).
thf(supset,definition,
( supset
= ( ^ [F: ( $i > $o ) > $o,X: $i] :
? [Y: $i > $o] :
( ( F @ Y )
& ( ( sup @ Y )
= X ) ) ) ) ).
thf(unionset_type,type,
unionset: ( ( $i > $o ) > $o ) > $i > $o ).
thf(unionset,definition,
( unionset
= ( ^ [F: ( $i > $o ) > $o,X: $i] :
? [Y: $i > $o] :
( ( F @ Y )
& ( Y @ X ) ) ) ) ).
thf(sup_set,axiom,
! [X: ( $i > $o ) > $o] :
( ( sup @ ( supset @ X ) )
= ( sup @ ( unionset @ X ) ) ) ).
%----Definition of binary sums and lattice order
thf(addition_type,type,
addition: $i > $i > $i ).
thf(addition_def,definition,
( addition
= ( ^ [X: $i,Y: $i] : ( sup @ ( union @ ( singleton @ X ) @ ( singleton @ Y ) ) ) ) ) ).
thf(order_type,type,
leq: $i > $i > $o ).
thf(order_def,axiom,
! [X1: $i,X2: $i] :
( ( leq @ X1 @ X2 )
<=> ( ( addition @ X1 @ X2 )
= X2 ) ) ).
%----Definition of multiplication
thf(multiplication_type,type,
multiplication: $i > $i > $i ).
thf(crossmult_type,type,
crossmult: ( $i > $o ) > ( $i > $o ) > $i > $o ).
thf(crossmult_def,definition,
( crossmult
= ( ^ [X: $i > $o,Y: $i > $o,A: $i] :
? [X1: $i,Y1: $i] :
( ( X @ X1 )
& ( Y @ Y1 )
& ( A
= ( multiplication @ X1 @ Y1 ) ) ) ) ) ).
thf(multiplication_def,axiom,
! [X: $i > $o,Y: $i > $o] :
( ( multiplication @ ( sup @ X ) @ ( sup @ Y ) )
= ( sup @ ( crossmult @ X @ Y ) ) ) ).
thf(one_type,type,
one: $i ).
thf(multiplication_neutral_right,axiom,
! [X: $i] :
( ( multiplication @ X @ one )
= X ) ).
thf(multiplication_neutral_left,axiom,
! [X: $i] :
( ( multiplication @ one @ X )
= X ) ).
%------------------------------------------------------------------------------