TPTP Axioms File: PLA001-0.ax
%--------------------------------------------------------------------------
% File : PLA001-0 : TPTP v9.0.0. Released v1.0.0.
% Domain : Planning (Blocks world)
% Axioms : Blocks world axioms
% Version : [SE94] axioms.
% English :
% Refs : [Sus73] Sussman (1973), A Computational Model of Skill Acquisi
% : [SE94] Segre & Elkan (1994), A High-Performance Explanation-B
% Source : [SE94]
% Names :
% Status : Satisfiable
% Syntax : Number of clauses : 10 ( 0 unt; 0 nHn; 8 RR)
% Number of literals : 31 ( 0 equ; 21 neg)
% Maximal clause size : 4 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 9 ( 9 usr; 2 con; 0-2 aty)
% Number of variables : 33 ( 3 sgn)
% SPC :
% Comments : The axioms are a reconstruction of the situation calculus
% blocks world as in [Sus73].
%--------------------------------------------------------------------------
cnf(and_definition,axiom,
( holds(and(X,Y),State)
| ~ holds(X,State)
| ~ holds(Y,State) ) ).
cnf(pickup_1,axiom,
( holds(holding(X),do(pickup(X),State))
| ~ holds(empty,State)
| ~ holds(clear(X),State)
| ~ differ(X,table) ) ).
cnf(pickup_2,axiom,
( holds(clear(Y),do(pickup(X),State))
| ~ holds(on(X,Y),State)
| ~ holds(clear(X),State)
| ~ holds(empty,State) ) ).
cnf(pickup_3,axiom,
( holds(on(X,Y),do(pickup(Z),State))
| ~ holds(on(X,Y),State)
| ~ differ(X,Z) ) ).
cnf(pickup_4,axiom,
( holds(clear(X),do(pickup(Z),State))
| ~ holds(clear(X),State)
| ~ differ(X,Z) ) ).
cnf(putdown_1,axiom,
( holds(empty,do(putdown(X,Y),State))
| ~ holds(holding(X),State)
| ~ holds(clear(Y),State) ) ).
cnf(putdown_2,axiom,
( holds(on(X,Y),do(putdown(X,Y),State))
| ~ holds(holding(X),State)
| ~ holds(clear(Y),State) ) ).
cnf(putdown_3,axiom,
( holds(clear(X),do(putdown(X,Y),State))
| ~ holds(holding(X),State)
| ~ holds(clear(Y),State) ) ).
cnf(putdown_4,axiom,
( holds(on(X,Y),do(putdown(Z,W),State))
| ~ holds(on(X,Y),State) ) ).
cnf(putdown_5,axiom,
( holds(clear(Z),do(putdown(X,Y),State))
| ~ holds(clear(Z),State)
| ~ differ(Z,Y) ) ).
%--------------------------------------------------------------------------