TPTP Axioms File: PHI002+1.ax
%------------------------------------------------------------------------------
% File : PHI002+1 : TPTP v9.0.0. Released v7.4.0.
% Domain : Philosophy
% Axioms : Axioms for Spinoza's Ethics - the DAPI
% Version : [Hor19] axioms.
% English :
% Refs : [Hor19] Horner (2019), A Computationally Assisted Reconstructi
% [Hor20] Horner (2020), Email to Geoff Sutcliffe
% Source : [Hor20]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 7 ( 0 unt; 0 def)
% Number of atoms : 24 ( 2 equ)
% Maximal formula atoms : 5 ( 3 avg)
% Number of connectives : 27 ( 10 ~; 2 |; 7 &)
% ( 2 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 6 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 17 ( 16 usr; 0 prp; 1-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 13 ( 13 !; 0 ?)
% SPC : FOF_SAT_RFO_SEQ
% Comments : Requires PHI002+0.ax
%------------------------------------------------------------------------------
%----Axiom I. Everything which exists, exists either in itself or in something
%----else.
fof(exists,axiom,
! [X,Y] :
( exists(X)
<=> ( existsIn(X,X)
| ( existsIn(X,Y)
& X != Y ) ) ) ).
%----Axiom II. That which cannot be conceived through itself must be conceived
%----through something else.
fof(conceived_through,axiom,
! [X,Y] :
( ~ conceivedThru(X,X)
=> ( conceivedThru(X,Y)
& X != Y ) ) ).
%----Axiom III. From a given definite cause an effect necessarily follows;
%----and, on the other hand, if no definite cause be granted, it is impossible
%----that an effect can follow.
fof(definite_cause,axiom,
! [X,Y] :
( definiteCause(X)
=> ( effectNecessarilyFollowsFrom(Y,X)
& ( ~ definiteCause(X)
=> ~ effectNecessarilyFollowsFrom(Y,X) ) ) ) ).
%----Axiom IV. The knowledge of an effect depends on and involves the knowledge
%----of a cause.
fof(knowledge_of_effect,axiom,
! [X,Y] :
( knowledgeOfEffect(X,Y)
<=> knowledgeOfACause(X) ) ).
%----Axiom V. Things which have nothing in common cannot be understood, the
%----one by the means of the other the one by means of the other; the
%----conception of one does not involve the conception of the other.
fof(have_nothing_in_common,axiom,
! [X,Y] :
( haveNothingInCommon(X,Y)
=> ( ~ canBeUnderstoodInTermsOf(X,Y)
& ~ canBeUnderstoodInTermsOf(Y,X)
& ~ conceptionInvolves(X,Y)
& ~ conceptionInvolves(Y,X) ) ) ).
%----Axiom VI. A true idea must correspond with its ideate or object.
fof(true_idea,axiom,
! [X,Y] :
( trueIdea(X)
=> ( correspondWith(X,Y)
& ( ideateOf(Y,X)
| objectOf(Y,X) ) ) ) ).
%----Axiom VII. If a thing can be conceived as non-existing, its essence does
%----not involve its existence.
fof(can_be_conceived_as_non_existing,axiom,
! [X] :
( canBeConceivedAsNonExisting(X)
=> ~ essenceInvExistence(X) ) ).
%------------------------------------------------------------------------------