TPTP Axioms File: PHI001^0.ax
%------------------------------------------------------------------------------
% File : PHI001^0 : TPTP v9.0.0. Released v6.1.0.
% Domain : Philosophy
% Axioms : Axioms for Goedel's Ontological Proof of the Existence of God
% Version : [Ben13] axioms.
% English :
% Refs : [Ben13] Benzmueller (2009), Email to Geoff Sutcliffe
% Source : [Ben13]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 12 ( 3 unt; 4 typ; 3 def)
% Number of atoms : 49 ( 3 equ; 0 cnn)
% Maximal formula atoms : 10 ( 4 avg)
% Number of connectives : 61 ( 0 ~; 0 |; 0 &; 61 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 5 avg; 61 nst)
% Number of types : 2 ( 0 usr)
% Number of type conns : 29 ( 29 >; 0 *; 0 +; 0 <<)
% Number of symbols : 15 ( 14 usr; 10 con; 0-3 aty)
% Number of variables : 15 ( 15 ^ 0 !; 0 ?; 15 :)
% SPC : TH0_SAT_EQU
% Comments : Requires LCL016^0.ax
%------------------------------------------------------------------------------
%----Signature
thf(positive_tp,type,
positive: ( mu > $i > $o ) > $i > $o ).
thf(god_tp,type,
god: mu > $i > $o ).
%----Constant symbol for essence: ess
thf(essence_tp,type,
essence: ( mu > $i > $o ) > mu > $i > $o ).
%----Constant symbol for necessary existence: ne
thf(necessary_existence_tp,type,
necessary_existence: mu > $i > $o ).
%----A1: Either the property or its negation are positive, but not both.
%----(Remark: only the left to right is needed for proving T1)
thf(axA1,axiom,
( mvalid
@ ( mforall_indset
@ ^ [Phi: mu > $i > $o] :
( mequiv
@ ( positive
@ ^ [X: mu] : ( mnot @ ( Phi @ X ) ) )
@ ( mnot @ ( positive @ Phi ) ) ) ) ) ).
%----A2: A property necessarily implied by a positive property is positive.
thf(axA2,axiom,
( mvalid
@ ( mforall_indset
@ ^ [Phi: mu > $i > $o] :
( mforall_indset
@ ^ [Psi: mu > $i > $o] :
( mimplies
@ ( mand @ ( positive @ Phi )
@ ( mbox
@ ( mforall_ind
@ ^ [X: mu] : ( mimplies @ ( Phi @ X ) @ ( Psi @ X ) ) ) ) )
@ ( positive @ Psi ) ) ) ) ) ).
%----D1: A God-like being possesses all positive properties.
thf(defD1,definition,
( god
= ( ^ [X: mu] :
( mforall_indset
@ ^ [Phi: mu > $i > $o] : ( mimplies @ ( positive @ Phi ) @ ( Phi @ X ) ) ) ) ) ).
%----A3: The property of being God-like is positive.
thf(axA3,axiom,
mvalid @ ( positive @ god ) ).
%----A4: Positive properties are necessary positive properties.
thf(axA4,axiom,
( mvalid
@ ( mforall_indset
@ ^ [Phi: mu > $i > $o] : ( mimplies @ ( positive @ Phi ) @ ( mbox @ ( positive @ Phi ) ) ) ) ) ).
%----D2: An essence of an individual is a property possessed by it and
%----necessarily implying any of its properties.
thf(defD2,definition,
( essence
= ( ^ [Phi: mu > $i > $o,X: mu] :
( mand @ ( Phi @ X )
@ ( mforall_indset
@ ^ [Psi: mu > $i > $o] :
( mimplies @ ( Psi @ X )
@ ( mbox
@ ( mforall_ind
@ ^ [Y: mu] : ( mimplies @ ( Phi @ Y ) @ ( Psi @ Y ) ) ) ) ) ) ) ) ) ).
%----D3: Necessary existence of an entity is the exemplification of all its
%----essences.
thf(defD3,definition,
( necessary_existence
= ( ^ [X: mu] :
( mforall_indset
@ ^ [Phi: mu > $i > $o] :
( mimplies @ ( essence @ Phi @ X )
@ ( mbox
@ ( mexists_ind
@ ^ [Y: mu] : ( Phi @ Y ) ) ) ) ) ) ) ).
%----A5: Necessary existence is positive.
thf(axA5,axiom,
mvalid @ ( positive @ necessary_existence ) ).
%------------------------------------------------------------------------------