TPTP Axioms File: NUM006^0.ax
%------------------------------------------------------------------------------
% File : NUM006^0 : TPTP v9.0.0. Released v3.6.0.
% Domain : Number Theory
% Axioms : Church Numerals in Simple Type Theory
% Version : [Ben08] axioms : Especial.
% English :
% Refs : [Ben08] Benzmueller (2008), Email to G. Sutcliffe
% Source : [Ben08]
% Names : CHURCH_NUM [Ben08]
% Status : Satisfiable
% Syntax : Number of formulae : 28 ( 14 unt; 14 typ; 14 def)
% Number of atoms : 14 ( 14 equ; 0 cnn)
% Maximal formula atoms : 1 ( 0 avg)
% Number of connectives : 65 ( 0 ~; 0 |; 0 &; 65 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 1 ( 1 avg; 65 nst)
% Number of types : 1 ( 0 usr)
% Number of type conns : 91 ( 91 >; 0 *; 0 +; 0 <<)
% Number of symbols : 15 ( 14 usr; 0 con; 2-4 aty)
% Number of variables : 33 ( 33 ^ 0 !; 0 ?; 33 :)
% SPC :
% Comments :
%------------------------------------------------------------------------------
thf(zero,type,
zero: ( $i > $i ) > $i > $i ).
thf(one,type,
one: ( $i > $i ) > $i > $i ).
thf(two,type,
two: ( $i > $i ) > $i > $i ).
thf(three,type,
three: ( $i > $i ) > $i > $i ).
thf(four,type,
four: ( $i > $i ) > $i > $i ).
thf(five,type,
five: ( $i > $i ) > $i > $i ).
thf(six,type,
six: ( $i > $i ) > $i > $i ).
thf(seven,type,
seven: ( $i > $i ) > $i > $i ).
thf(eight,type,
eight: ( $i > $i ) > $i > $i ).
thf(nine,type,
nine: ( $i > $i ) > $i > $i ).
thf(ten,type,
ten: ( $i > $i ) > $i > $i ).
thf(succ,type,
succ: ( ( $i > $i ) > $i > $i ) > ( $i > $i ) > $i > $i ).
thf(plus,type,
plus: ( ( $i > $i ) > $i > $i ) > ( ( $i > $i ) > $i > $i ) > ( $i > $i ) > $i > $i ).
thf(mult,type,
mult: ( ( $i > $i ) > $i > $i ) > ( ( $i > $i ) > $i > $i ) > ( $i > $i ) > $i > $i ).
thf(zero_ax,definition,
( zero
= ( ^ [X: $i > $i,Y: $i] : Y ) ) ).
thf(one_ax,definition,
( one
= ( ^ [X: $i > $i,Y: $i] : ( X @ Y ) ) ) ).
thf(two_ax,definition,
( two
= ( ^ [X: $i > $i,Y: $i] : ( X @ ( X @ Y ) ) ) ) ).
thf(three_ax,definition,
( three
= ( ^ [X: $i > $i,Y: $i] : ( X @ ( X @ ( X @ Y ) ) ) ) ) ).
thf(four_ax,definition,
( four
= ( ^ [X: $i > $i,Y: $i] : ( X @ ( X @ ( X @ ( X @ Y ) ) ) ) ) ) ).
thf(five_ax,definition,
( five
= ( ^ [X: $i > $i,Y: $i] : ( X @ ( X @ ( X @ ( X @ ( X @ Y ) ) ) ) ) ) ) ).
thf(six_ax,definition,
( six
= ( ^ [X: $i > $i,Y: $i] : ( X @ ( X @ ( X @ ( X @ ( X @ ( X @ Y ) ) ) ) ) ) ) ) ).
thf(seven_ax,definition,
( seven
= ( ^ [X: $i > $i,Y: $i] : ( X @ ( X @ ( X @ ( X @ ( X @ ( X @ ( X @ Y ) ) ) ) ) ) ) ) ) ).
thf(eight_ax,definition,
( eight
= ( ^ [X: $i > $i,Y: $i] : ( X @ ( X @ ( X @ ( X @ ( X @ ( X @ ( X @ ( X @ Y ) ) ) ) ) ) ) ) ) ) ).
thf(nine_ax,definition,
( nine
= ( ^ [X: $i > $i,Y: $i] : ( X @ ( X @ ( X @ ( X @ ( X @ ( X @ ( X @ ( X @ ( X @ Y ) ) ) ) ) ) ) ) ) ) ) ).
thf(ten_ax,definition,
( ten
= ( ^ [X: $i > $i,Y: $i] : ( X @ ( X @ ( X @ ( X @ ( X @ ( X @ ( X @ ( X @ ( X @ ( X @ Y ) ) ) ) ) ) ) ) ) ) ) ) ).
thf(succ_ax,definition,
( succ
= ( ^ [N: ( $i > $i ) > $i > $i,X: $i > $i,Y: $i] : ( X @ ( N @ X @ Y ) ) ) ) ).
thf(plus_ax,definition,
( plus
= ( ^ [M: ( $i > $i ) > $i > $i,N: ( $i > $i ) > $i > $i,X: $i > $i,Y: $i] : ( M @ X @ ( N @ X @ Y ) ) ) ) ).
thf(mult_ax,definition,
( mult
= ( ^ [M: ( $i > $i ) > $i > $i,N: ( $i > $i ) > $i > $i,X: $i > $i,Y: $i] : ( M @ ( N @ X ) @ Y ) ) ) ).
%------------------------------------------------------------------------------