TPTP Axioms File: NUM005+1.ax
%------------------------------------------------------------------------------
% File : NUM005+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Number Theory
% Axioms : Less in RDN format
% Version : Especial.
% English : Impements a "human style" less using RDN format.
% Refs :
% Source : [TPTP]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 30 ( 18 unt; 0 def)
% Number of atoms : 52 ( 2 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 24 ( 2 ~; 1 |; 9 &)
% ( 2 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-3 aty)
% Number of functors : 14 ( 14 usr; 10 con; 0-2 aty)
% Number of variables : 35 ( 35 !; 0 ?)
% SPC :
% Comments : Requires NUM005+0.ax
%------------------------------------------------------------------------------
fof(rdn_digit1,axiom,
rdn_non_zero_digit(rdnn(n1)) ).
fof(rdn_digit2,axiom,
rdn_non_zero_digit(rdnn(n2)) ).
fof(rdn_digit3,axiom,
rdn_non_zero_digit(rdnn(n3)) ).
fof(rdn_digit4,axiom,
rdn_non_zero_digit(rdnn(n4)) ).
fof(rdn_digit5,axiom,
rdn_non_zero_digit(rdnn(n5)) ).
fof(rdn_digit6,axiom,
rdn_non_zero_digit(rdnn(n6)) ).
fof(rdn_digit7,axiom,
rdn_non_zero_digit(rdnn(n7)) ).
fof(rdn_digit8,axiom,
rdn_non_zero_digit(rdnn(n8)) ).
fof(rdn_digit9,axiom,
rdn_non_zero_digit(rdnn(n9)) ).
fof(rdn_positive_less01,axiom,
rdn_positive_less(rdnn(n0),rdnn(n1)) ).
fof(rdn_positive_less12,axiom,
rdn_positive_less(rdnn(n1),rdnn(n2)) ).
fof(rdn_positive_less23,axiom,
rdn_positive_less(rdnn(n2),rdnn(n3)) ).
fof(rdn_positive_less34,axiom,
rdn_positive_less(rdnn(n3),rdnn(n4)) ).
fof(rdn_positive_less45,axiom,
rdn_positive_less(rdnn(n4),rdnn(n5)) ).
fof(rdn_positive_less56,axiom,
rdn_positive_less(rdnn(n5),rdnn(n6)) ).
fof(rdn_positive_less67,axiom,
rdn_positive_less(rdnn(n6),rdnn(n7)) ).
fof(rdn_positive_less78,axiom,
rdn_positive_less(rdnn(n7),rdnn(n8)) ).
fof(rdn_positive_less89,axiom,
rdn_positive_less(rdnn(n8),rdnn(n9)) ).
fof(rdn_positive_less_transitivity,axiom,
! [X,Y,Z] :
( ( rdn_positive_less(rdnn(X),rdnn(Y))
& rdn_positive_less(rdnn(Y),rdnn(Z)) )
=> rdn_positive_less(rdnn(X),rdnn(Z)) ) ).
fof(rdn_positive_less_multi_digit_high,axiom,
! [Ds,Os,Db,Ob] :
( rdn_positive_less(Os,Ob)
=> rdn_positive_less(rdn(rdnn(Ds),Os),rdn(rdnn(Db),Ob)) ) ).
fof(rdn_positive_less_multi_digit_low,axiom,
! [Ds,O,Db] :
( ( rdn_positive_less(rdnn(Ds),rdnn(Db))
& rdn_non_zero(O) )
=> rdn_positive_less(rdn(rdnn(Ds),O),rdn(rdnn(Db),O)) ) ).
fof(rdn_extra_digits_positive_less,axiom,
! [D,Db,Ob] :
( rdn_non_zero(Ob)
=> rdn_positive_less(rdnn(D),rdn(rdnn(Db),Ob)) ) ).
fof(rdn_non_zero_by_digit,axiom,
! [X] :
( rdn_non_zero_digit(rdnn(X))
=> rdn_non_zero(rdnn(X)) ) ).
fof(rdn_non_zero_by_structure,axiom,
! [D,O] :
( rdn_non_zero(O)
=> rdn_non_zero(rdn(rdnn(D),O)) ) ).
fof(less_entry_point_pos_pos,axiom,
! [X,Y,RDN_X,RDN_Y] :
( ( rdn_translate(X,rdn_pos(RDN_X))
& rdn_translate(Y,rdn_pos(RDN_Y))
& rdn_positive_less(RDN_X,RDN_Y) )
=> less(X,Y) ) ).
fof(less_entry_point_neg_pos,axiom,
! [X,Y,RDN_X,RDN_Y] :
( ( rdn_translate(X,rdn_neg(RDN_X))
& rdn_translate(Y,rdn_pos(RDN_Y)) )
=> less(X,Y) ) ).
fof(less_entry_point_neg_neg,axiom,
! [X,Y,RDN_X,RDN_Y] :
( ( rdn_translate(X,rdn_neg(RDN_X))
& rdn_translate(Y,rdn_neg(RDN_Y))
& rdn_positive_less(RDN_Y,RDN_X) )
=> less(X,Y) ) ).
fof(less_property,axiom,
! [X,Y] :
( less(X,Y)
<=> ( ~ less(Y,X)
& Y != X ) ) ).
%----Old axiom from the days of natural numbers
%fof(less0,axiom,(
% ~ ( ? [X] : less(X,n0) ) )).
fof(less_or_equal,axiom,
! [X,Y] :
( less_or_equal(X,Y)
<=> ( less(X,Y)
| X = Y ) ) ).
%----Successive integers
fof(less_successor,axiom,
! [X,Y,Z] :
( ( sum(X,n1,Y)
& less(Z,Y) )
=> less_or_equal(Z,X) ) ).
%------------------------------------------------------------------------------