TPTP Axioms File: NUM002-0.ax


%--------------------------------------------------------------------------
% File     : NUM002-0 : TPTP v9.0.0. Released v1.0.0.
% Domain   : Number theory
% Axioms   : Number theory (equality) axioms
% Version  : [LS74] (equality) axioms : Biased.
% English  :

% Refs     : [LS74]  Lawrence & Starkey (1974), Experimental Tests of Resol
% Source   : [SPRFN]
% Names    :

% Status   : Satisfiable
% Syntax   : Number of clauses     :   12 (   7 unt;   0 nHn;   5 RR)
%            Number of literals    :   22 (   0 equ;  10 neg)
%            Maximal clause size   :    3 (   1 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    1 (   1 usr;   0 prp; 2-2 aty)
%            Number of functors    :    2 (   2 usr;   0 con; 2-2 aty)
%            Number of variables   :   35 (   0 sgn)
% SPC      : 

% Comments :
%--------------------------------------------------------------------------
cnf(reflexivity,axiom,
    equalish(A,A) ).

cnf(transitivity,axiom,
    ( ~ equalish(A,B)
    | ~ equalish(B,C)
    | equalish(A,C) ) ).

cnf(commutativity_of_addition,axiom,
    equalish(add(A,B),add(B,A)) ).

cnf(associativity_of_addition,axiom,
    equalish(add(A,add(B,C)),add(add(A,B),C)) ).

cnf(addition_inverts_subtraction1,axiom,
    equalish(subtract(add(A,B),B),A) ).

cnf(addition_inverts_subtraction2,axiom,
    equalish(A,subtract(add(A,B),B)) ).

cnf(commutativity1,axiom,
    equalish(add(subtract(A,B),C),subtract(add(A,C),B)) ).

cnf(commutativity2,axiom,
    equalish(subtract(add(A,B),C),add(subtract(A,C),B)) ).

cnf(add_substitution1,axiom,
    ( ~ equalish(A,B)
    | ~ equalish(C,add(A,D))
    | equalish(C,add(B,D)) ) ).

cnf(add_substitution2,axiom,
    ( ~ equalish(A,B)
    | ~ equalish(C,add(D,A))
    | equalish(C,add(D,B)) ) ).

cnf(subtract_substitution1,axiom,
    ( ~ equalish(A,B)
    | ~ equalish(C,subtract(A,D))
    | equalish(C,subtract(B,D)) ) ).

cnf(subtract_substitution2,axiom,
    ( ~ equalish(A,B)
    | ~ equalish(C,subtract(D,A))
    | equalish(C,subtract(D,B)) ) ).

%--------------------------------------------------------------------------