TPTP Axioms File: MVA001-0.ax
%------------------------------------------------------------------------------
% File : MVA001-0 : TPTP v9.0.0. Released v8.0.0.
% Domain : MV-algebras
% Axioms : Generalized MV algebras (equality)
% Version : [Ver10] (equality) axioms.
% English :
% Refs : [GT05] Galatos & Tsinakis (2005), Generalized MV-algebras
% : [GJ+07] Galatos et al. (2007), Residuated Lattices: An Algebra
% : [Ver10] Veroff (2010), Email to Geoff Sutcliffe
% : [Sma21] Smallbone (2021), Email to Geoff Sutcliffe
% Source : [Ver10]
% Names : gmv+1.ax [Sma21]
% Status : Satisfiable
% Syntax : Number of clauses : 18 ( 18 unt; 0 nHn; 0 RR)
% Number of literals : 18 ( 18 equ; 0 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 1 con; 0-2 aty)
% Number of variables : 39 ( 6 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(associativity_of_meet,axiom,
( meet(meet(X,Y),Z) = meet(X,meet(Y,Z)) )).
cnf(associativity_of_join,axiom,
( join(join(X,Y),Z) = join(X,join(Y,Z)) )).
cnf(idempotence_of_meet,axiom,
( meet(X,X) = X )).
cnf(idempotence_of_join,axiom,
( join(X,X) = X )).
cnf(commutativity_of_meet,axiom,
( meet(X,Y) = meet(Y,X) )).
cnf(commutativity_of_join,axiom,
( join(X,Y) = join(Y,X) )).
cnf(absorption_a,axiom,
( join(meet(X,Y),X) = X )).
cnf(absorption_b,axiom,
( meet(join(X,Y),X) = X )).
cnf(residual_a,axiom,
( join(op(X,meet(ld(X,Z),Y)),Z) = Z )).
cnf(residual_b,axiom,
( join(op(meet(Y,rd(Z,X)),X),Z) = Z )).
cnf(residual_c,axiom,
( meet(ld(X,join(op(X,Y),Z)),Y) = Y )).
cnf(residual_d,axiom,
( meet(rd(join(op(Y,X),Z),X),Y) = Y )).
cnf(monoid_associativity,axiom,
( op(op(X,Y),Z) = op(X,op(Y,Z)) )).
cnf(left_monoid_unit,axiom,
( op(unit,X) = X )).
cnf(right_monoid_unit,axiom,
( op(X,unit) = X )).
cnf(generalized_mv_algebra_a,axiom,
( join(X,Y) = rd(X,ld(join(X,Y),X)) )).
cnf(generalized_mv_algebra_b,axiom,
( join(X,Y) = ld(rd(X,join(X,Y)),X) )).
cnf(definition_of_at,axiom,
( at(X,Y) = op(op(X,ld(X,unit)),ld(ld(Y,unit),unit)) )).
%------------------------------------------------------------------------------