TPTP Axioms File: MGT001-0.ax


%--------------------------------------------------------------------------
% File     : MGT001-0 : TPTP v9.0.0. Released v2.4.0.
% Domain   : Management (Organisation Theory)
% Axioms   : Inequalities.
% Version  : [Han98] axioms.
% English  :

% Refs     : [Kam00] Kamps (2000), Email to G. Sutcliffe
%            [CH00]  Carroll & Hannan (2000), The Demography of Corporation
%            [Han98] Hannan (1998), Rethinking Age Dependence in Organizati
% Source   : [Kam00]
% Names    :

% Status   : Satisfiable
% Syntax   : Number of clauses     :   11 (   0 unt;   3 nHn;  10 RR)
%            Number of literals    :   26 (   5 equ;  12 neg)
%            Maximal clause size   :    3 (   2 avg)
%            Maximal term depth    :    1 (   1 avg)
%            Number of predicates  :    5 (   4 usr;   0 prp; 2-2 aty)
%            Number of functors    :    0 (   0 usr;   0 con; --- aty)
%            Number of variables   :   23 (   0 sgn)
% SPC      : 

% Comments : Created with tptp2X -f tptp -t clausify:otter MGT001+0.ax
%--------------------------------------------------------------------------
cnf(definition_smaller_or_equal_1,axiom,
    ( ~ smaller_or_equal(A,B)
    | smaller(A,B)
    | A = B ) ).

cnf(definition_smaller_or_equal_2,axiom,
    ( ~ smaller(A,B)
    | smaller_or_equal(A,B) ) ).

cnf(definition_smaller_or_equal_3,axiom,
    ( A != B
    | smaller_or_equal(A,B) ) ).

cnf(definition_greater_or_equal_4,axiom,
    ( ~ greater_or_equal(A,B)
    | greater(A,B)
    | A = B ) ).

cnf(definition_greater_or_equal_5,axiom,
    ( ~ greater(A,B)
    | greater_or_equal(A,B) ) ).

cnf(definition_greater_or_equal_6,axiom,
    ( A != B
    | greater_or_equal(A,B) ) ).

cnf(definition_smaller_7,axiom,
    ( ~ smaller(A,B)
    | greater(B,A) ) ).

cnf(definition_smaller_8,axiom,
    ( ~ greater(A,B)
    | smaller(B,A) ) ).

cnf(meaning_postulate_greater_strict_9,axiom,
    ( ~ greater(A,B)
    | ~ greater(B,A) ) ).

cnf(meaning_postulate_greater_transitive_10,axiom,
    ( ~ greater(A,B)
    | ~ greater(B,C)
    | greater(A,C) ) ).

cnf(meaning_postulate_greater_comparable_11,axiom,
    ( smaller(A,B)
    | A = B
    | greater(A,B) ) ).

%--------------------------------------------------------------------------