TPTP Axioms File: MGT001+0.ax
%--------------------------------------------------------------------------
% File : MGT001+0 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Axioms : Inequalities.
% Version : [Han98] axioms.
% English :
% Refs : [Kam00] Kamps (2000), Email to G. Sutcliffe
% [CH00] Carroll & Hannan (2000), The Demography of Corporation
% [Han98] Hannan (1998), Rethinking Age Dependence in Organizati
% Source : [Kam00]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 6 ( 0 unt; 0 def)
% Number of atoms : 16 ( 3 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 11 ( 1 ~; 4 |; 2 &)
% ( 3 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 5 ( 4 usr; 0 prp; 2-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 13 ( 13 !; 0 ?)
% SPC :
% Comments :
%--------------------------------------------------------------------------
%----Definition of smaller_or_equal (i.t.o. smaller and equal).
fof(definition_smaller_or_equal,axiom,
! [X,Y] :
( smaller_or_equal(X,Y)
<=> ( smaller(X,Y)
| X = Y ) ) ).
%%----Definition of smaller_or_equal (i.t.o. greater).
%input_formula(definition_smaller_or_equal, axiom, (
% ! [X,Y] :
% ( smaller_or_equal(X,Y)
% <=> ( ~ greater(X,Y) ) ) )).
%----Definition of greater_or_equal (i.t.o. greater and equal).
fof(definition_greater_or_equal,axiom,
! [X,Y] :
( greater_or_equal(X,Y)
<=> ( greater(X,Y)
| X = Y ) ) ).
%%----Definition of greater_or_equal (i.t.o. greater and equal).
%input_formula(definition_greater_or_equal, axiom, (
% ! [X,Y] :
% ( greater_or_equal(X,Y)
% <=> ( ~ greater(Y,X) ) ) )).
%----Definition of smaller (i.t.o. greater).
fof(definition_smaller,axiom,
! [X,Y] :
( smaller(X,Y)
<=> greater(Y,X) ) ).
%----Our notion of greater is strict (irreflexive and antisymmetric).
fof(meaning_postulate_greater_strict,axiom,
! [X,Y] :
~ ( greater(X,Y)
& greater(Y,X) ) ).
%%----Derivable from above.
%input_formula(meaning_postulate_greater_strict2, axiom, (
% ! [X] :
% ( ~ greater(X,X) ) )).
%----Our notion of greater is transitive.
fof(meaning_postulate_greater_transitive,axiom,
! [X,Y,Z] :
( ( greater(X,Y)
& greater(Y,Z) )
=> greater(X,Z) ) ).
%----Hazards of mortality are comparable.
%input_formula(background_ass_a1, axiom, (
% ! [X,T0,T] :
% ( organization(X)
% => ( ( greater(hazard_of_mortality(X,T),hazard_of_mortality(X,T0))
% | equal(hazard_of_mortality(X,T),hazard_of_mortality(X,T0)) )
% => smaller(hazard_of_mortality(X,T),hazard_of_mortality(X,T0)) ) ) )).
%----Trichotomy statement for everything.
%input_formula(meaning_postulate_greater_comparable, axiom, (
% ! [X,Y] :
% ( greater(Y,X)
% | equal(X,Y)
% | greater(X,Y) ) )).
fof(meaning_postulate_greater_comparable,axiom,
! [X,Y] :
( smaller(X,Y)
| X = Y
| greater(X,Y) ) ).
%--------------------------------------------------------------------------