TPTP Axioms File: MED001+1.ax
%------------------------------------------------------------------------------
% File : MED001+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Medicine
% Axioms : "Completed" Physiology Diabetes Mellitus type 2
% Version : [HLB05] axioms : Especial.
% English : Completed theory of diabetes mellitus type 2 mechanisms
% Refs : [HLB05] Hommersom et al. (2005), Automated Theorem Proving for
% : [Hom06] Hommersom (2006), Email to G. Sutcliffe
% Source : [Hom06]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 22 ( 0 unt; 0 def)
% Number of atoms : 114 ( 0 equ)
% Maximal formula atoms : 30 ( 5 avg)
% Number of connectives : 137 ( 45 ~; 21 |; 30 &)
% ( 0 <=>; 41 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 6 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 19 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 51 ( 48 !; 3 ?)
% SPC :
% Comments : Requires MED001+0.ax
%------------------------------------------------------------------------------
fof(xorstep1,axiom,
! [X0] :
( s0(X0)
| s1(X0)
| s2(X0)
| s3(X0) ) ).
fof(xorstep2,axiom,
! [X0] :
( ~ s0(X0)
| ~ s1(X0) ) ).
fof(xorstep3,axiom,
! [X0] :
( ~ s0(X0)
| ~ s2(X0) ) ).
fof(xorstep4,axiom,
! [X0] :
( ~ s0(X0)
| ~ s3(X0) ) ).
fof(xorstep5,axiom,
! [X0] :
( ~ s1(X0)
| ~ s2(X0) ) ).
fof(xorstep6,axiom,
! [X0] :
( ~ s1(X0)
| ~ s3(X0) ) ).
fof(xorstep7,axiom,
! [X0] :
( ~ s2(X0)
| ~ s3(X0) ) ).
fof(normo,axiom,
! [X0] :
( ! [X1] :
( ~ gt(X0,X1)
=> conditionnormo(X1) )
=> ( ( ! [X1] :
( ~ gt(X0,X1)
=> bsecretioni(X1) )
& bcapacitysn(X0)
& qilt27(X0)
& ! [X1] :
( gt(X0,X1)
=> conditionhyper(X1) ) )
| ( ! [X1] :
( ~ gt(X0,X1)
=> ~ releaselg(X1) )
& bcapacitysn(X0)
& ~ qilt27(X0)
& ! [X1] :
( gt(X0,X1)
=> conditionhyper(X1) ) )
| ( ( ! [X1] :
( ~ gt(X0,X1)
=> ~ releaselg(X1) )
| ! [X1] :
( ~ gt(X0,X1)
=> uptakepg(X1) ) )
& bcapacityne(X0)
& ! [X1] :
( ~ gt(X0,X1)
=> bsecretioni(X1) )
& ! [X1] :
( gt(X0,X1)
=> conditionhyper(X1) ) )
| ( ! [X1] :
( ~ gt(X0,X1)
=> uptakelg(X1) )
& ! [X1] :
( ~ gt(X0,X1)
=> uptakepg(X1) )
& bcapacityex(X0)
& ! [X1] :
( gt(X0,X1)
=> conditionhyper(X1) ) ) ) ) ).
fof(step1,axiom,
! [X0] :
( ( s1(X0)
& qilt27(X0) )
=> drugsu(X0) ) ).
fof(step2,axiom,
! [X0] :
( ( s1(X0)
& ~ qilt27(X0) )
=> drugbg(X0) ) ).
fof(step3,axiom,
! [X0] :
( s2(X0)
=> ( drugbg(X0)
& drugsu(X0) ) ) ).
fof(step4,axiom,
! [X0] :
( s3(X0)
=> ( ( drugi(X0)
& ( drugsu(X0)
| drugbg(X0) ) )
| drugi(X0) ) ) ).
fof(bgcomp,axiom,
! [X0] :
( drugbg(X0)
=> ( ( s1(X0)
& ~ qilt27(X0) )
| s2(X0)
| s3(X0) ) ) ).
fof(sucomp,axiom,
! [X0] :
( drugsu(X0)
=> ( ( s1(X0)
& qillt27(X0) )
| s2(X0)
| s3(X0) ) ) ).
fof(insulincomp,axiom,
! [X0] :
( drugi(X0)
=> s3(X0) ) ).
fof(insulin_completion,axiom,
! [X0] :
( ( ! [X1] :
( ~ gt(X0,X1)
=> uptakelg(X1) )
| ! [X1] :
( ~ gt(X0,X1)
=> uptakepg(X1) ) )
=> ! [X1] :
( ~ gt(X0,X1)
=> drugi(X1) ) ) ).
fof(uptake_completion,axiom,
! [X0,X1] :
( ~ gt(X0,X1)
=> ( ~ releaselg(X1)
=> uptakelg(X1) ) ) ).
fof(su_completion,axiom,
! [X0] :
( ! [X1] :
( ~ gt(X0,X1)
=> bsecretioni(X1) )
=> ( ! [X1] :
( ~ gt(X0,X1)
=> drugsu(X1) )
& ~ bcapacityex(X0) ) ) ).
fof(bg_completion,axiom,
! [X0] :
( ! [X1] :
( ~ gt(X0,X1)
=> ~ releaselg(X1) )
=> ! [X1] :
( ~ gt(X0,X1)
=> drugbg(X1) ) ) ).
fof(trans_ax1,axiom,
! [X0] :
( ( s0(X0)
& ~ ! [X1] :
( ~ gt(X0,X1)
=> conditionnormo(X1) ) )
=> ? [X1] :
( ~ gt(X0,X1)
& s1(X1)
& ! [X2] :
( gt(X1,X2)
=> conditionhyper(X2) ) ) ) ).
fof(trans_ax2,axiom,
! [X0] :
( ( s1(X0)
& ~ ! [X1] :
( ~ gt(X0,X1)
=> conditionnormo(X1) ) )
=> ? [X1] :
( ~ gt(X0,X1)
& s2(X1)
& ! [X2] :
( gt(X1,X2)
=> conditionhyper(X2) )
& ( bcapacityne(X1)
| bcapacityex(X1) ) ) ) ).
fof(trans_ax3,axiom,
! [X0] :
( ( s2(X0)
& ~ ! [X1] :
( ~ gt(X0,X1)
=> conditionnormo(X1) ) )
=> ? [X1] :
( ~ gt(X0,X1)
& s3(X1)
& ! [X2] :
( gt(X1,X2)
=> conditionhyper(X2) )
& bcapacityex(X1) ) ) ).
%------------------------------------------------------------------------------