TPTP Axioms File: LCL017^1.ax
%------------------------------------------------------------------------------
% File : LCL017^1 : TPTP v9.0.0. Released v7.5.0.
% Domain : Logic Calculi (Modal Logic)
% Axioms : Variable Domain Quantifiers for Modal Logic
% Version : [Gus20] axioms.
% English :
% Refs : [Gus20] Gustafsson (2020), Email to Geoff Sutcliffe
% Source : [Gus20]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 6 ( 3 unt; 3 typ; 2 def)
% Number of atoms : 9 ( 2 equ; 0 cnn)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 11 ( 0 ~; 0 |; 0 &; 10 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 2 avg; 10 nst)
% Number of types : 2 ( 0 usr)
% Number of type conns : 14 ( 14 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 7 ( 4 ^ 2 !; 1 ?; 7 :)
% SPC : TH0_SAT_EQU_NAR
% Comments : Combine with LCL016^0 for Quantified Modal Logic K wth variable
% domain.
% : Combine with LCL016^0 and LCL016^1 for Quantified Modal Logic KB
% with variable domain.
% : Combine with LCL017^0 for Quantified Modal Logic S5 with variable
% domain.
%------------------------------------------------------------------------------
thf(eiw_ind,type,
eiw_ind: $i > mu > $o ).
thf(nonempty_ind,axiom,
! [V: $i] :
? [X: mu] : ( eiw_ind @ V @ X ) ).
thf(mforall_eiw_ind_type,type,
mforall_eiw_ind: ( mu > $i > $o ) > $i > $o ).
thf(mforall_eiw_ind,definition,
( mforall_eiw_ind
= ( ^ [Phi: mu > $i > $o,W: $i] :
! [X: mu] :
( ( eiw_ind @ W @ X )
=> ( Phi @ X @ W ) ) ) ) ).
thf(mexists_eiw_ind_type,type,
mexists_eiw_ind: ( mu > $i > $o ) > $i > $o ).
thf(mexists_eiw_ind,definition,
( mexists_eiw_ind
= ( ^ [Phi: mu > $i > $o] :
( mnot
@ ( mforall_eiw_ind
@ ^ [X: mu] : ( mnot @ ( Phi @ X ) ) ) ) ) ) ).
%------------------------------------------------------------------------------