TPTP Axioms File: LCL016^0.ax


%------------------------------------------------------------------------------
% File     : LCL016^0 : TPTP v9.0.0. Released .0.
% Domain   : Logic Calculi (Second Order Modal Logic)
% Axioms   : Embedding of second order modal logic in simple type theory
% Version  : [Ben13] axioms.
% English  : An embedding of second order monomodal logic into simple type
%            theory. The concrete logic is base logic K.

% Refs     : [Ben13] Benzmueller (2013), Email to Geoff Sutcliffe
%          : [BP13]  Benzmueller & Paulson (2013), Quantified Multimodal Lo
% Source   : [Ben13]
% Names    :

% Status   : Satisfiable
% Syntax   : Number of formulae    :   46 (  22 unt;  24 typ;  22 def)
%            Number of atoms       :   51 (  23 equ;   0 cnn)
%            Maximal formula atoms :    1 (   1 avg)
%            Number of connectives :   52 (   5   ~;   3   |;   4   &;  37   @)
%                                         (   1 <=>;   2  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    1 (   1 avg;  37 nst)
%            Number of types       :    3 (   1 usr)
%            Number of type conns  :  137 ( 137   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   26 (  23 usr;   2 con; 0-3 aty)
%            Number of variables   :   55 (  45   ^   6   !;   4   ?;  55   :)
% SPC      : TH0_SAT_EQU

% Comments : In order to obtain other logics such B or S5 one can further
%            restrict the accessibility relation. E.g. for B one can simply
%            add the axiom of symmetry for rel. For S5 one would additionally
%            postulate reflexivity and transitivity of rel.
%          : Quantifiers are provided for individuals, sets or individuals
%            (properties), and propositions. We here assume and implement
%            constant domain semantics. Respective quantifiers for varying
%            domains and cumulative domains can easily be added. An explicit
%            "existInWorlds" predicate can be introduced for this, and the
%            quantifiers would then be relativized using this predicate. The
%            generic operators mbox_generic and mdia_generic can be applied to
%            a particular accessibility relation rel to turn these generic
%            modal operators turn into a particular mbox and mdia operator for
%            rel. Hence, this axiomatization supports multimodal logics, and
%            for stating bridge rules there are different options: conditions
%            on the accessibility relations can be stated or usual bridge
%            rules can be stated unsing propositional quantification.
%------------------------------------------------------------------------------
%----Declaration of additional base type mu
thf(mu_type,type,
    mu: $tType ).

%----Equality on individuals
thf(meq_ind_type,type,
    meq_ind: mu > mu > $i > $o ).

thf(meq_ind,definition,
    ( meq_ind
    = ( ^ [X: mu,Y: mu,W: $i] : ( X = Y ) ) ) ).

%----Modal operators mtrue, mfalse, mnot, mor, mand, mimplies, mequiv, ...
thf(mtrue_type,type,
    mtrue: $i > $o ).

thf(mtrue,definition,
    ( mtrue
    = ( ^ [W: $i] : $true ) ) ).

thf(mfalse_type,type,
    mfalse: $i > $o ).

thf(mfalse,definition,
    ( mfalse
    = ( ^ [W: $i] : $false ) ) ).

thf(mnot_type,type,
    mnot: ( $i > $o ) > $i > $o ).

thf(mnot,definition,
    ( mnot
    = ( ^ [Phi: $i > $o,W: $i] :
          ~ ( Phi @ W ) ) ) ).

thf(mor_type,type,
    mor: ( $i > $o ) > ( $i > $o ) > $i > $o ).

thf(mor,definition,
    ( mor
    = ( ^ [Phi: $i > $o,Psi: $i > $o,W: $i] :
          ( ( Phi @ W )
          | ( Psi @ W ) ) ) ) ).

thf(mand_type,type,
    mand: ( $i > $o ) > ( $i > $o ) > $i > $o ).

thf(mand,definition,
    ( mand
    = ( ^ [Phi: $i > $o,Psi: $i > $o,W: $i] :
          ( ( Phi @ W )
          & ( Psi @ W ) ) ) ) ).

thf(mimplies_type,type,
    mimplies: ( $i > $o ) > ( $i > $o ) > $i > $o ).

thf(mimplies,definition,
    ( mimplies
    = ( ^ [Phi: $i > $o,Psi: $i > $o,W: $i] :
          ( ( Phi @ W )
         => ( Psi @ W ) ) ) ) ).

thf(mimplied_type,type,
    mimplied: ( $i > $o ) > ( $i > $o ) > $i > $o ).

thf(mimplied,definition,
    ( mimplied
    = ( ^ [Phi: $i > $o,Psi: $i > $o,W: $i] :
          ( ( Psi @ W )
         => ( Phi @ W ) ) ) ) ).

thf(mequiv_type,type,
    mequiv: ( $i > $o ) > ( $i > $o ) > $i > $o ).

thf(mequiv,definition,
    ( mequiv
    = ( ^ [Phi: $i > $o,Psi: $i > $o,W: $i] :
          ( ( Phi @ W )
        <=> ( Psi @ W ) ) ) ) ).

thf(mxor_type,type,
    mxor: ( $i > $o ) > ( $i > $o ) > $i > $o ).

thf(mxor,definition,
    ( mxor
    = ( ^ [Phi: $i > $o,Psi: $i > $o,W: $i] :
          ( ( ( Phi @ W )
            & ~ ( Psi @ W ) )
          | ( ~ ( Phi @ W )
            & ( Psi @ W ) ) ) ) ) ).

%----Universal quantification: individuals
thf(mforall_ind_type,type,
    mforall_ind: ( mu > $i > $o ) > $i > $o ).

thf(mforall_ind,definition,
    ( mforall_ind
    = ( ^ [Phi: mu > $i > $o,W: $i] :
        ! [X: mu] : ( Phi @ X @ W ) ) ) ).

%----Universal quantification: sets of individuals (properties)
thf(mforall_indset_type,type,
    mforall_indset: ( ( mu > $i > $o ) > $i > $o ) > $i > $o ).

thf(mforall_indset,definition,
    ( mforall_indset
    = ( ^ [Phi: ( mu > $i > $o ) > $i > $o,W: $i] :
        ! [X: mu > $i > $o] : ( Phi @ X @ W ) ) ) ).

%----Universal quantification: propositions
thf(mforall_prop_type,type,
    mforall_prop: ( ( $i > $o ) > $i > $o ) > $i > $o ).

thf(mforall_prop,definition,
    ( mforall_prop
    = ( ^ [Phi: ( $i > $o ) > $i > $o,W: $i] :
        ! [P: $i > $o] : ( Phi @ P @ W ) ) ) ).

%----Existential quantification: individuals
thf(mexists_ind_type,type,
    mexists_ind: ( mu > $i > $o ) > $i > $o ).

thf(mexists_ind,definition,
    ( mexists_ind
    = ( ^ [Phi: mu > $i > $o,W: $i] :
        ? [X: mu] : ( Phi @ X @ W ) ) ) ).

%----Existential quantification: sets of individuals (properties)
thf(mexists_indset_type,type,
    mexists_indset: ( ( mu > $i > $o ) > $i > $o ) > $i > $o ).

thf(mexists_indset,definition,
    ( mexists_indset
    = ( ^ [Phi: ( mu > $i > $o ) > $i > $o,W: $i] :
        ? [X: mu > $i > $o] : ( Phi @ X @ W ) ) ) ).

%----Existential quantification: propositions
thf(mexists_prop_type,type,
    mexists_prop: ( ( $i > $o ) > $i > $o ) > $i > $o ).

thf(mexists_prop,definition,
    ( mexists_prop
    = ( ^ [Phi: ( $i > $o ) > $i > $o,W: $i] :
        ? [P: $i > $o] : ( Phi @ P @ W ) ) ) ).

%----Generic mbox operator
thf(mbox_generic_type,type,
    mbox_generic: ( $i > $i > $o ) > ( $i > $o ) > $i > $o ).

thf(mbox_generic,definition,
    ( mbox_generic
    = ( ^ [R: $i > $i > $o,Phi: $i > $o,W: $i] :
        ! [V: $i] :
          ( ~ ( R @ W @ V )
          | ( Phi @ V ) ) ) ) ).

%----Generic mdia operator
thf(mdia_generic_type,type,
    mdia_generic: ( $i > $i > $o ) > ( $i > $o ) > $i > $o ).

thf(mdia_generic,definition,
    ( mdia_generic
    = ( ^ [R: $i > $i > $o,Phi: $i > $o,W: $i] :
        ? [V: $i] :
          ( ( R @ W @ V )
          & ( Phi @ V ) ) ) ) ).

%----The accessibility relation rel
thf(rel_type,type,
    rel: $i > $i > $o ).

%----The mbox operator instantiated for rel (further mbox operators
%----for other accessibility relations can be introduced analogously)
thf(mbox_type,type,
    mbox: ( $i > $o ) > $i > $o ).

thf(mbox,definition,
    ( mbox
    = ( mbox_generic @ rel ) ) ).

%----The mdia operator instantiated for rel (further mdia operators
%----for other accessibility relations can be introduced analogously)
thf(mdia_type,type,
    mdia: ( $i > $o ) > $i > $o ).

thf(mdia,definition,
    ( mdia
    = ( mdia_generic @ rel ) ) ).

%----The notion of validity
thf(mvalid_type,type,
    mvalid: ( $i > $o ) > $o ).

thf(mvalid,definition,
    ( mvalid
    = ( ^ [Phi: $i > $o] :
        ! [W: $i] : ( Phi @ W ) ) ) ).

%----Definition of invalidity
thf(minvalid_type,type,
    minvalid: ( $i > $o ) > $o ).

thf(minvalid,definition,
    ( minvalid
    = ( ^ [Phi: $i > $o] :
        ! [W: $i] :
          ~ ( Phi @ W ) ) ) ).

%------------------------------------------------------------------------------