TPTP Axioms File: LCL014^0.ax
%------------------------------------------------------------------------------
% File : LCL014^0 : TPTP v9.0.0. Released .0.
% Domain : Logical Calculi
% Axioms : Region Connection Calculus
% Version : [RCC92] axioms.
% English :
% Refs : [RCC92] Randell et al. (1992), A Spatial Logic Based on Region
% : [Ben10a] Benzmueller (2010), Email to Geoff Sutcliffe
% : [Ben10b] Benzmueller (2010), Simple Type Theory as a Framework
% Source : [Ben10a]
% Names : RCC.ax [Ben10a]
% Status : Satisfiable
% Syntax : Number of formulae : 22 ( 10 unt; 11 typ; 9 def)
% Number of atoms : 41 ( 9 equ; 0 cnn)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 64 ( 6 ~; 0 |; 10 &; 46 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 2 avg; 46 nst)
% Number of types : 2 ( 1 usr)
% Number of type conns : 20 ( 20 >; 0 *; 0 +; 0 <<)
% Number of symbols : 11 ( 10 usr; 0 con; 2-2 aty)
% Number of variables : 25 ( 18 ^ 4 !; 3 ?; 25 :)
% SPC :
% Comments :
%------------------------------------------------------------------------------
thf(reg_type,type,
reg: $tType ).
thf(c_type,type,
c: reg > reg > $o ).
thf(dc_type,type,
dc: reg > reg > $o ).
thf(p_type,type,
p: reg > reg > $o ).
thf(eq_type,type,
eq: reg > reg > $o ).
thf(o_type,type,
o: reg > reg > $o ).
thf(po_type,type,
po: reg > reg > $o ).
thf(ec_type,type,
ec: reg > reg > $o ).
thf(pp_type,type,
pp: reg > reg > $o ).
thf(tpp_type,type,
tpp: reg > reg > $o ).
thf(ntpp_type,type,
ntpp: reg > reg > $o ).
thf(c_reflexive,axiom,
! [X: reg] : ( c @ X @ X ) ).
thf(c_symmetric,axiom,
! [X: reg,Y: reg] :
( ( c @ X @ Y )
=> ( c @ Y @ X ) ) ).
thf(dc,definition,
( dc
= ( ^ [X: reg,Y: reg] :
~ ( c @ X @ Y ) ) ) ).
thf(p,definition,
( p
= ( ^ [X: reg,Y: reg] :
! [Z: reg] :
( ( c @ Z @ X )
=> ( c @ Z @ Y ) ) ) ) ).
thf(eq,definition,
( eq
= ( ^ [X: reg,Y: reg] :
( ( p @ X @ Y )
& ( p @ Y @ X ) ) ) ) ).
thf(o,definition,
( o
= ( ^ [X: reg,Y: reg] :
? [Z: reg] :
( ( p @ Z @ X )
& ( p @ Z @ Y ) ) ) ) ).
thf(po,definition,
( po
= ( ^ [X: reg,Y: reg] :
( ( o @ X @ Y )
& ~ ( p @ X @ Y )
& ~ ( p @ Y @ X ) ) ) ) ).
thf(ec,definition,
( ec
= ( ^ [X: reg,Y: reg] :
( ( c @ X @ Y )
& ~ ( o @ X @ Y ) ) ) ) ).
thf(pp,definition,
( pp
= ( ^ [X: reg,Y: reg] :
( ( p @ X @ Y )
& ~ ( p @ Y @ X ) ) ) ) ).
thf(tpp,definition,
( tpp
= ( ^ [X: reg,Y: reg] :
( ( pp @ X @ Y )
& ? [Z: reg] :
( ( ec @ Z @ X )
& ( ec @ Z @ Y ) ) ) ) ) ).
thf(ntpp,definition,
( ntpp
= ( ^ [X: reg,Y: reg] :
( ( pp @ X @ Y )
& ~ ? [Z: reg] :
( ( ec @ Z @ X )
& ( ec @ Z @ Y ) ) ) ) ) ).
%------------------------------------------------------------------------------