TPTP Axioms File: LCL013^5.ax
%------------------------------------------------------------------------------
% File : LCL013^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Logic Calculi (Modal logic)
% Axioms : Modal logic S4
% Version : [Ben09] axioms.
% English : Embedding of monomodal logic S4 in simple type theory.
% Refs : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% Source : [Ben09]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 7 ( 2 unt; 3 typ; 2 def)
% Number of atoms : 12 ( 2 equ; 0 cnn)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 10 ( 1 ~; 1 |; 0 &; 8 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 2 ( 2 avg; 8 nst)
% Number of types : 2 ( 0 usr)
% Number of type conns : 10 ( 10 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 6 usr; 3 con; 0-2 aty)
% Number of variables : 4 ( 3 ^ 1 !; 0 ?; 4 :)
% SPC :
% Comments : Requires LCL013^0 or (LCL015^0 and LCL015^1)
%------------------------------------------------------------------------------
%----We reserve an accessibility relation constant rel_s4
thf(rel_s4_type,type,
rel_s4: $i > $i > $o ).
%----We define mbox_s4 and mdia_s4 based on rel_s4
thf(mbox_s4_type,type,
mbox_s4: ( $i > $o ) > $i > $o ).
thf(mbox_s4,definition,
( mbox_s4
= ( ^ [Phi: $i > $o,W: $i] :
! [V: $i] :
( ~ ( rel_s4 @ W @ V )
| ( Phi @ V ) ) ) ) ).
thf(mdia_s4_type,type,
mdia_s4: ( $i > $o ) > $i > $o ).
thf(mdia_s4,definition,
( mdia_s4
= ( ^ [Phi: $i > $o] : ( mnot @ ( mbox_s4 @ ( mnot @ Phi ) ) ) ) ) ).
%----We have now two options for stating the B conditions:
%----We can (i) directly formulate conditions for the accessibility relation
%----constant or we can (ii) state corresponding axioms. We here prefer (i)
thf(a1,axiom,
mreflexive @ rel_s4 ).
thf(a2,axiom,
mtransitive @ rel_s4 ).
%------------------------------------------------------------------------------