TPTP Axioms File: LCL013^3.ax
%------------------------------------------------------------------------------
% File : LCL013^3 : TPTP v9.0.0. Released v4.0.0.
% Domain : Logic Calculi (Modal logic)
% Axioms : Modal logic M
% Version : [Ben09] axioms.
% English : Embedding of monomodal logic M in simple type theory.
% Refs : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% Source : [Ben09]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 6 ( 2 unt; 3 typ; 2 def)
% Number of atoms : 10 ( 2 equ; 0 cnn)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 9 ( 1 ~; 1 |; 0 &; 7 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 2 ( 1 avg; 7 nst)
% Number of types : 2 ( 0 usr)
% Number of type conns : 10 ( 10 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 4 ( 3 ^ 1 !; 0 ?; 4 :)
% SPC :
% Comments : Requires LCL013^0
%------------------------------------------------------------------------------
%----We reserve an accessibility relation constant rel_m
thf(rel_m_type,type,
rel_m: $i > $i > $o ).
%----We define mbox_m and mdia_m based on rel_m
thf(mbox_m_type,type,
mbox_m: ( $i > $o ) > $i > $o ).
thf(mbox_m,definition,
( mbox_m
= ( ^ [Phi: $i > $o,W: $i] :
! [V: $i] :
( ~ ( rel_m @ W @ V )
| ( Phi @ V ) ) ) ) ).
thf(mdia_m_type,type,
mdia_m: ( $i > $o ) > $i > $o ).
thf(mdia_m,definition,
( mdia_m
= ( ^ [Phi: $i > $o] : ( mnot @ ( mbox_m @ ( mnot @ Phi ) ) ) ) ) ).
%----We have now two options for stating the B conditions:
%----We can (i) directly formulate conditions for the accessibility relation
%----constant or we can (ii) state corresponding axioms. We here prefer (i)
thf(a1,axiom,
mreflexive @ rel_m ).
%------------------------------------------------------------------------------