TPTP Axioms File: LCL013^2.ax


%------------------------------------------------------------------------------
% File     : LCL013^2 : TPTP v9.0.0. Released v4.0.0.
% Domain   : Logic Calculi (Modal logic)
% Axioms   : Modal logic D
% Version  : [Ben09] axioms.
% English  : Embedding of monomodal logic D in simple type theory

% Refs     : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% Source   : [Ben09]
% Names    :

% Status   : Satisfiable
% Syntax   : Number of formulae    :    6 (   2 unt;   3 typ;   2 def)
%            Number of atoms       :   10 (   2 equ;   0 cnn)
%            Maximal formula atoms :    2 (   1 avg)
%            Number of connectives :    9 (   1   ~;   1   |;   0   &;   7   @)
%                                         (   0 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    2 (   1 avg;   7 nst)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :   10 (  10   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    6 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :    4 (   3   ^   1   !;   0   ?;   4   :)
% SPC      : 

% Comments : Requires LCL013^0
%------------------------------------------------------------------------------
%----We reserve an accessibility relation constant rel_d
thf(rel_d_type,type,
    rel_d: $i > $i > $o ).

%----We define mbox_d and mdia_d based on rel_d
thf(mbox_d_type,type,
    mbox_d: ( $i > $o ) > $i > $o ).

thf(mbox_d,definition,
    ( mbox_d
    = ( ^ [Phi: $i > $o,W: $i] :
        ! [V: $i] :
          ( ~ ( rel_d @ W @ V )
          | ( Phi @ V ) ) ) ) ).

thf(mdia_d_type,type,
    mdia_d: ( $i > $o ) > $i > $o ).

thf(mdia_d,definition,
    ( mdia_d
    = ( ^ [Phi: $i > $o] : ( mnot @ ( mbox_d @ ( mnot @ Phi ) ) ) ) ) ).

%----We have now two options for stating the B conditions: 
%----We can (i) directly formulate conditions for the accessibility relation
%----constant or we can (ii) state corresponding axioms. We here prefer (i)
thf(a1,axiom,
    mserial @ rel_d ).

%------------------------------------------------------------------------------