TPTP Axioms File: LCL013^1.ax


%------------------------------------------------------------------------------
% File     : LCL013^1 : TPTP v9.0.0. Released v4.0.0.
% Domain   : Logic Calculi (Modal logic)
% Axioms   : Modal logic K
% Version  : [Ben09] axioms.
% English  : Embedding of monomodal logic K in simple type theory.

% Refs     : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% Source   : [Ben09]
% Names    :

% Status   : Satisfiable
% Syntax   : Number of formulae    :    5 (   2 unt;   3 typ;   2 def)
%            Number of atoms       :    8 (   2 equ;   0 cnn)
%            Maximal formula atoms :    1 (   1 avg)
%            Number of connectives :    8 (   1   ~;   1   |;   0   &;   6   @)
%                                         (   0 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    1 (   1 avg;   6 nst)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :   10 (  10   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    5 (   4 usr;   1 con; 0-2 aty)
%            Number of variables   :    4 (   3   ^   1   !;   0   ?;   4   :)
% SPC      : 

% Comments : Requires LCL013^0
%------------------------------------------------------------------------------
%----We reserve an accessibility relation constant rel_k
thf(rel_k_type,type,
    rel_k: $i > $i > $o ).

%----We define mbox_k and mdia_k based on rel_k
thf(mbox_k_type,type,
    mbox_k: ( $i > $o ) > $i > $o ).

thf(mbox_k,definition,
    ( mbox_k
    = ( ^ [Phi: $i > $o,W: $i] :
        ! [V: $i] :
          ( ~ ( rel_k @ W @ V )
          | ( Phi @ V ) ) ) ) ).

thf(mdia_k_type,type,
    mdia_k: ( $i > $o ) > $i > $o ).

thf(mdia_k,definition,
    ( mdia_k
    = ( ^ [Phi: $i > $o] : ( mnot @ ( mbox_k @ ( mnot @ Phi ) ) ) ) ) ).

%------------------------------------------------------------------------------