TPTP Axioms File: LCL013^1.ax
%------------------------------------------------------------------------------
% File : LCL013^1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Logic Calculi (Modal logic)
% Axioms : Modal logic K
% Version : [Ben09] axioms.
% English : Embedding of monomodal logic K in simple type theory.
% Refs : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% Source : [Ben09]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 5 ( 2 unt; 3 typ; 2 def)
% Number of atoms : 8 ( 2 equ; 0 cnn)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 8 ( 1 ~; 1 |; 0 &; 6 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 1 ( 1 avg; 6 nst)
% Number of types : 2 ( 0 usr)
% Number of type conns : 10 ( 10 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 4 ( 3 ^ 1 !; 0 ?; 4 :)
% SPC :
% Comments : Requires LCL013^0
%------------------------------------------------------------------------------
%----We reserve an accessibility relation constant rel_k
thf(rel_k_type,type,
rel_k: $i > $i > $o ).
%----We define mbox_k and mdia_k based on rel_k
thf(mbox_k_type,type,
mbox_k: ( $i > $o ) > $i > $o ).
thf(mbox_k,definition,
( mbox_k
= ( ^ [Phi: $i > $o,W: $i] :
! [V: $i] :
( ~ ( rel_k @ W @ V )
| ( Phi @ V ) ) ) ) ).
thf(mdia_k_type,type,
mdia_k: ( $i > $o ) > $i > $o ).
thf(mdia_k,definition,
( mdia_k
= ( ^ [Phi: $i > $o] : ( mnot @ ( mbox_k @ ( mnot @ Phi ) ) ) ) ) ).
%------------------------------------------------------------------------------