TPTP Axioms File: LCL006+4.ax
%------------------------------------------------------------------------------
% File : LCL006+4 : TPTP v9.0.0. Released v3.3.0.
% Domain : Logic Calculi (Propositional)
% Axioms : Principia's axiomatization of propositional logic
% Version : [RW10] axioms.
% English :
% Refs : [RW10] Russell & Whitehead (1910), Principia Mathmatica
% : [Hal] Halleck (URL), John Halleck's Logic Systems
% : [She06] Shen (2006), Automated Proofs of Equivalence of Modal
% Source : [Hal]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 10 ( 10 unt; 0 def)
% Number of atoms : 10 ( 0 equ)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 0 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 1 ( 1 avg)
% Maximal term depth : 0 ( 0 avg)
% Number of predicates : 10 ( 10 usr; 10 prp; 0-0 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 0 ( 0 !; 0 ?)
% SPC :
% Comments : Requires LCL006+0, LCL006+1
%------------------------------------------------------------------------------
%----Operator definitions to reduce everything to and & not
fof(principia_op_implies_or,axiom,
op_implies_or ).
fof(principia_op_and,axiom,
op_and ).
fof(principia_op_equiv,axiom,
op_equiv ).
%----The one explicit rule
fof(principia_modus_ponens,axiom,
modus_ponens ).
%----The axioms
fof(principia_r1,axiom,
r1 ).
fof(principia_r2,axiom,
r2 ).
fof(principia_r3,axiom,
r3 ).
%----This is the redundant axiom in Principia
fof(principia_r4,axiom,
r4 ).
fof(principia_r5,axiom,
r5 ).
%----Admissible but not required for completeness. With it much more can
%----be done.
fof(substitution_of_equivalents,axiom,
substitution_of_equivalents ).
%------------------------------------------------------------------------------