TPTP Axioms File: LCL006+2.ax
%------------------------------------------------------------------------------
% File : LCL006+2 : TPTP v9.0.0. Released v3.3.0.
% Domain : Logic Calculi (Propositional)
% Axioms : Hilbert's axiomatization of propositional logic
% Version : [HB34] axioms.
% English :
% Refs : [HB34] Hilbert & Bernays (1934), Grundlagen der Mathematick
% : [Hac66] Hackstaff (1966), Systems of Formal Logic
% : [Hal] Halleck (URL), John Halleck's Logic Systems
% : [She06] Shen (2006), Automated Proofs of Equivalence of Modal
% Source : [Hal]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 18 ( 18 unt; 0 def)
% Number of atoms : 18 ( 0 equ)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 0 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 1 ( 1 avg)
% Maximal term depth : 0 ( 0 avg)
% Number of predicates : 18 ( 18 usr; 18 prp; 0-0 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 0 ( 0 !; 0 ?)
% SPC :
% Comments : Requires LCL006+0, LCL006+1
%------------------------------------------------------------------------------
%----Operator definitions to reduce everything to and & not
fof(hilbert_op_or,axiom,
op_or ).
fof(hilbert_op_implies_and,axiom,
op_implies_and ).
fof(hilbert_op_equiv,axiom,
op_equiv ).
%----The one explicit rule
fof(hilbert_modus_ponens,axiom,
modus_ponens ).
%----The axioms
fof(hilbert_modus_tollens,axiom,
modus_tollens ).
fof(hilbert_implies_1,axiom,
implies_1 ).
fof(hilbert_implies_2,axiom,
implies_2 ).
fof(hilbert_implies_3,axiom,
implies_3 ).
fof(hilbert_and_1,axiom,
and_1 ).
fof(hilbert_and_2,axiom,
and_2 ).
fof(hilbert_and_3,axiom,
and_3 ).
fof(hilbert_or_1,axiom,
or_1 ).
fof(hilbert_or_2,axiom,
or_2 ).
fof(hilbert_or_3,axiom,
or_3 ).
fof(hilbert_equivalence_1,axiom,
equivalence_1 ).
fof(hilbert_equivalence_2,axiom,
equivalence_2 ).
fof(hilbert_equivalence_3,axiom,
equivalence_3 ).
%----Admissible but not required for completeness. With it much more can
%----be done.
fof(substitution_of_equivalents,axiom,
substitution_of_equivalents ).
%------------------------------------------------------------------------------