TPTP Axioms File: LAT006-2.ax
%------------------------------------------------------------------------------
% File : LAT006-2 : TPTP v9.0.0. Released v3.2.0.
% Domain : Lattice Theory
% Axioms : Tarski's fixed point theorem L (equality) axioms
% Version : [Pau06] (equality) axioms.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names : Tarski__L.ax [Pau06]
% Status : Satisfiable
% Syntax : Number of clauses : 15 ( 1 unt; 5 nHn; 12 RR)
% Number of literals : 51 ( 4 equ; 27 neg)
% Maximal clause size : 5 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 7 ( 6 usr; 0 prp; 2-4 aty)
% Number of functors : 17 ( 17 usr; 7 con; 0-4 aty)
% Number of variables : 51 ( 6 sgn)
% SPC :
% Comments :
%------------------------------------------------------------------------------
cnf(cls_Tarski_O_91_124_AS1_A_60_61_AA_59_AS1_A_126_61_A_123_125_59_AALL_Ax_58S1_O_A_Ia1_M_Ax_J_A_58_Ar_59_AALL_Ay_58S1_O_A_Iy_M_AL1_J_A_58_Ar_A_124_93_A_61_61_62_A_Ia1_M_AL1_J_A_58_Ar_A_61_61_ATrue_0,axiom,
( ~ c_lessequals(V_S,V_A,tc_set(t_a))
| c_in(c_Pair(V_a,V_L,t_a,t_a),v_r,tc_prod(t_a,t_a))
| c_in(v_sko__4mj(V_S,V_a,v_r),V_S,t_a)
| c_in(v_sko__4mk(V_L,V_S,v_r),V_S,t_a)
| V_S = c_emptyset ) ).
cnf(cls_Tarski_O_91_124_AS1_A_60_61_AA_59_AS1_A_126_61_A_123_125_59_AALL_Ax_58S1_O_A_Ia1_M_Ax_J_A_58_Ar_59_AALL_Ay_58S1_O_A_Iy_M_AL1_J_A_58_Ar_A_124_93_A_61_61_62_A_Ia1_M_AL1_J_A_58_Ar_A_61_61_ATrue_1,axiom,
( ~ c_in(c_Pair(v_sko__4mk(V_L,V_S,v_r),V_L,t_a,t_a),v_r,tc_prod(t_a,t_a))
| ~ c_lessequals(V_S,V_A,tc_set(t_a))
| c_in(c_Pair(V_a,V_L,t_a,t_a),v_r,tc_prod(t_a,t_a))
| c_in(v_sko__4mj(V_S,V_a,v_r),V_S,t_a)
| V_S = c_emptyset ) ).
cnf(cls_Tarski_O_91_124_AS1_A_60_61_AA_59_AS1_A_126_61_A_123_125_59_AALL_Ax_58S1_O_A_Ia1_M_Ax_J_A_58_Ar_59_AALL_Ay_58S1_O_A_Iy_M_AL1_J_A_58_Ar_A_124_93_A_61_61_62_A_Ia1_M_AL1_J_A_58_Ar_A_61_61_ATrue_2,axiom,
( ~ c_in(c_Pair(V_a,v_sko__4mj(V_S,V_a,v_r),t_a,t_a),v_r,tc_prod(t_a,t_a))
| ~ c_lessequals(V_S,V_A,tc_set(t_a))
| c_in(c_Pair(V_a,V_L,t_a,t_a),v_r,tc_prod(t_a,t_a))
| c_in(v_sko__4mk(V_L,V_S,v_r),V_S,t_a)
| V_S = c_emptyset ) ).
cnf(cls_Tarski_O_91_124_AS1_A_60_61_AA_59_AS1_A_126_61_A_123_125_59_AALL_Ax_58S1_O_A_Ia1_M_Ax_J_A_58_Ar_59_AALL_Ay_58S1_O_A_Iy_M_AL1_J_A_58_Ar_A_124_93_A_61_61_62_A_Ia1_M_AL1_J_A_58_Ar_A_61_61_ATrue_3,axiom,
( ~ c_in(c_Pair(V_a,v_sko__4mj(V_S,V_a,v_r),t_a,t_a),v_r,tc_prod(t_a,t_a))
| ~ c_in(c_Pair(v_sko__4mk(V_L,V_S,v_r),V_L,t_a,t_a),v_r,tc_prod(t_a,t_a))
| ~ c_lessequals(V_S,V_A,tc_set(t_a))
| c_in(c_Pair(V_a,V_L,t_a,t_a),v_r,tc_prod(t_a,t_a))
| V_S = c_emptyset ) ).
cnf(cls_Tarski_O_91_124_AS1_A_60_61_Ainterval_Ar_Aa1_Ab1_59_Ax1_A_58_AS1_A_124_93_A_61_61_62_A_Ia1_M_Ax1_J_A_58_Ar_A_61_61_ATrue_0,axiom,
( ~ c_in(V_x,V_S,T_a)
| ~ c_lessequals(V_S,c_Tarski_Ointerval(V_r,V_a,V_b,T_a),tc_set(T_a))
| c_in(c_Pair(V_a,V_x,T_a,T_a),V_r,tc_prod(T_a,T_a)) ) ).
cnf(cls_Tarski_O_91_124_AS1_A_60_61_Ainterval_Ar_Aa1_Ab1_59_Ax1_A_58_AS1_A_124_93_A_61_61_62_A_Ix1_M_Ab1_J_A_58_Ar_A_61_61_ATrue_0,axiom,
( ~ c_in(V_x,V_S,T_a)
| ~ c_lessequals(V_S,c_Tarski_Ointerval(V_r,V_a,V_b,T_a),tc_set(T_a))
| c_in(c_Pair(V_x,V_b,T_a,T_a),V_r,tc_prod(T_a,T_a)) ) ).
cnf(cls_Tarski_O_91_124_A_Ia1_M_Ax1_J_A_58_Ar_59_A_Ix1_M_Ab1_J_A_58_Ar_A_124_93_A_61_61_62_Ax1_A_58_Ainterval_Ar_Aa1_Ab1_A_61_61_ATrue_0,axiom,
( ~ c_in(c_Pair(V_x,V_b,T_a,T_a),V_r,tc_prod(T_a,T_a))
| ~ c_in(c_Pair(V_a,V_x,T_a,T_a),V_r,tc_prod(T_a,T_a))
| c_in(V_x,c_Tarski_Ointerval(V_r,V_a,V_b,T_a),T_a) ) ).
cnf(cls_Tarski_O_91_124_Aa1_A_58_AA_59_Ab1_A_58_AA_59_AS1_A_60_61_Ainterval_Ar_Aa1_Ab1_A_124_93_A_61_61_62_AS1_A_60_61_AA_A_61_61_ATrue_0,axiom,
( ~ c_in(V_b,v_A,t_a)
| ~ c_in(V_a,v_A,t_a)
| ~ c_lessequals(V_S,c_Tarski_Ointerval(v_r,V_a,V_b,t_a),tc_set(t_a))
| c_lessequals(V_S,v_A,tc_set(t_a)) ) ).
cnf(cls_Tarski_O_91_124_AisLub_AS1_Acl_AL1_59_Ay1_A_58_AS1_A_124_93_A_61_61_62_A_Iy1_M_AL1_J_A_58_Ar_A_61_61_ATrue_0,axiom,
( ~ c_Tarski_OisLub(V_S,v_cl,V_L,t_a)
| ~ c_in(V_y,V_S,t_a)
| c_in(c_Pair(V_y,V_L,t_a,t_a),v_r,tc_prod(t_a,t_a)) ) ).
cnf(cls_Tarski_O_91_124_AisLub_AS1_Acl_AL1_59_Az1_A_58_AA_59_AALL_Ay_58S1_O_A_Iy_M_Az1_J_A_58_Ar_A_124_93_A_61_61_62_A_IL1_M_Az1_J_A_58_Ar_A_61_61_ATrue_0,axiom,
( ~ c_Tarski_OisLub(V_S,v_cl,V_L,t_a)
| ~ c_in(V_z,v_A,t_a)
| c_in(c_Pair(V_L,V_z,t_a,t_a),v_r,tc_prod(t_a,t_a))
| c_in(v_sko__4mi(V_S,v_r,V_z),V_S,t_a) ) ).
cnf(cls_Tarski_O_91_124_AisLub_AS1_Acl_AL1_59_Az1_A_58_AA_59_AALL_Ay_58S1_O_A_Iy_M_Az1_J_A_58_Ar_A_124_93_A_61_61_62_A_IL1_M_Az1_J_A_58_Ar_A_61_61_ATrue_1,axiom,
( ~ c_Tarski_OisLub(V_S,v_cl,V_L,t_a)
| ~ c_in(V_z,v_A,t_a)
| ~ c_in(c_Pair(v_sko__4mi(V_S,v_r,V_z),V_z,t_a,t_a),v_r,tc_prod(t_a,t_a))
| c_in(c_Pair(V_L,V_z,t_a,t_a),v_r,tc_prod(t_a,t_a)) ) ).
cnf(cls_Tarski_Ocl1_A_58_ACompleteLattice_A_61_61_62_Aantisym_A_Iorder_Acl1_J_A_61_61_ATrue_0,axiom,
( ~ c_in(V_cl,c_Tarski_OCompleteLattice,tc_Tarski_Opotype_Opotype__ext__type(T_a,tc_Product__Type_Ounit))
| c_Relation_Oantisym(c_Tarski_Opotype_Oorder(V_cl,T_a,tc_Product__Type_Ounit),T_a) ) ).
cnf(cls_Tarski_Ocl1_A_58_ACompleteLattice_A_61_61_62_Arefl_A_Ipset_Acl1_J_A_Iorder_Acl1_J_A_61_61_ATrue_0,axiom,
( ~ c_in(V_cl,c_Tarski_OCompleteLattice,tc_Tarski_Opotype_Opotype__ext__type(T_a,tc_Product__Type_Ounit))
| c_Relation_Orefl(c_Tarski_Opotype_Opset(V_cl,T_a,tc_Product__Type_Ounit),c_Tarski_Opotype_Oorder(V_cl,T_a,tc_Product__Type_Ounit),T_a) ) ).
cnf(cls_Tarski_Ocl1_A_58_ACompleteLattice_A_61_61_62_Atrans_A_Iorder_Acl1_J_A_61_61_ATrue_0,axiom,
( ~ c_in(V_cl,c_Tarski_OCompleteLattice,tc_Tarski_Opotype_Opotype__ext__type(T_a,tc_Product__Type_Ounit))
| c_Relation_Otrans(c_Tarski_Opotype_Oorder(V_cl,T_a,tc_Product__Type_Ounit),T_a) ) ).
cnf(cls_Tarski_Ocl_A_58_ACompleteLattice_A_61_61_ATrue_0,axiom,
c_in(v_cl,c_Tarski_OCompleteLattice,tc_Tarski_Opotype_Opotype__ext__type(t_a,tc_Product__Type_Ounit)) ).
%------------------------------------------------------------------------------