TPTP Axioms File: LAT006-1.ax
%------------------------------------------------------------------------------
% File : LAT006-1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Lattice Theory
% Axioms : Tarski's fixed point theorem GLB (equality) axioms
% Version : [Pau06] (equality) axioms.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names : Tarski__glb.ax [Pau06]
% Status : Satisfiable
% Syntax : Number of clauses : 13 ( 7 unt; 0 nHn; 11 RR)
% Number of literals : 22 ( 4 equ; 9 neg)
% Maximal clause size : 5 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 6 ( 5 usr; 0 prp; 2-3 aty)
% Number of functors : 16 ( 16 usr; 7 con; 0-4 aty)
% Number of variables : 23 ( 0 sgn)
% SPC :
% Comments :
%------------------------------------------------------------------------------
cnf(cls_Tarski_OA_A_61_61_Apset_Acl_0,axiom,
v_A = c_Tarski_Opotype_Opset(v_cl,t_a,tc_Product__Type_Ounit) ).
cnf(cls_Tarski_OCL_Olub__upper_0,axiom,
( ~ c_in(V_x,V_S,T_a)
| ~ c_in(V_cl,c_Tarski_OCompleteLattice,tc_Tarski_Opotype_Opotype__ext__type(T_a,tc_Product__Type_Ounit))
| ~ c_in(V_cl,c_Tarski_OPartialOrder,tc_Tarski_Opotype_Opotype__ext__type(T_a,tc_Product__Type_Ounit))
| ~ c_lessequals(V_S,c_Tarski_Opotype_Opset(V_cl,T_a,tc_Product__Type_Ounit),tc_set(T_a))
| c_in(c_Pair(V_x,c_Tarski_Olub(V_S,V_cl,T_a),T_a,T_a),c_Tarski_Opotype_Oorder(V_cl,T_a,tc_Product__Type_Ounit),tc_prod(T_a,T_a)) ) ).
cnf(cls_Tarski_O_Ix1_M_Ay1_J_A_58_Aorder_A_Idual_Acl_J_A_61_61_A_Iy1_M_Ax1_J_A_58_Aorder_Acl_0,axiom,
( ~ c_in(c_Pair(V_x,V_y,T_a,T_a),c_Tarski_Opotype_Oorder(c_Tarski_Odual(V_cl,T_a),T_a,tc_Product__Type_Ounit),tc_prod(T_a,T_a))
| c_in(c_Pair(V_y,V_x,T_a,T_a),c_Tarski_Opotype_Oorder(V_cl,T_a,tc_Product__Type_Ounit),tc_prod(T_a,T_a)) ) ).
cnf(cls_Tarski_O_Ix1_M_Ay1_J_A_58_Aorder_A_Idual_Acl_J_A_61_61_A_Iy1_M_Ax1_J_A_58_Aorder_Acl_1,axiom,
( ~ c_in(c_Pair(V_y,V_x,T_a,T_a),c_Tarski_Opotype_Oorder(V_cl,T_a,tc_Product__Type_Ounit),tc_prod(T_a,T_a))
| c_in(c_Pair(V_x,V_y,T_a,T_a),c_Tarski_Opotype_Oorder(c_Tarski_Odual(V_cl,T_a),T_a,tc_Product__Type_Ounit),tc_prod(T_a,T_a)) ) ).
cnf(cls_Tarski_Ocl1_A_58_ACompleteLattice_A_61_61_62_Aantisym_A_Iorder_Acl1_J_A_61_61_ATrue_0,axiom,
( ~ c_in(V_cl,c_Tarski_OCompleteLattice,tc_Tarski_Opotype_Opotype__ext__type(T_a,tc_Product__Type_Ounit))
| c_Relation_Oantisym(c_Tarski_Opotype_Oorder(V_cl,T_a,tc_Product__Type_Ounit),T_a) ) ).
cnf(cls_Tarski_Ocl1_A_58_ACompleteLattice_A_61_61_62_Arefl_A_Ipset_Acl1_J_A_Iorder_Acl1_J_A_61_61_ATrue_0,axiom,
( ~ c_in(V_cl,c_Tarski_OCompleteLattice,tc_Tarski_Opotype_Opotype__ext__type(T_a,tc_Product__Type_Ounit))
| c_Relation_Orefl(c_Tarski_Opotype_Opset(V_cl,T_a,tc_Product__Type_Ounit),c_Tarski_Opotype_Oorder(V_cl,T_a,tc_Product__Type_Ounit),T_a) ) ).
cnf(cls_Tarski_Ocl1_A_58_ACompleteLattice_A_61_61_62_Atrans_A_Iorder_Acl1_J_A_61_61_ATrue_0,axiom,
( ~ c_in(V_cl,c_Tarski_OCompleteLattice,tc_Tarski_Opotype_Opotype__ext__type(T_a,tc_Product__Type_Ounit))
| c_Relation_Otrans(c_Tarski_Opotype_Oorder(V_cl,T_a,tc_Product__Type_Ounit),T_a) ) ).
cnf(cls_Tarski_Ocl_A_58_ACompleteLattice_A_61_61_ATrue_0,axiom,
c_in(v_cl,c_Tarski_OCompleteLattice,tc_Tarski_Opotype_Opotype__ext__type(t_a,tc_Product__Type_Ounit)) ).
cnf(cls_Tarski_Odual_Acl_A_58_ACompleteLattice_0,axiom,
c_in(c_Tarski_Odual(v_cl,t_a),c_Tarski_OCompleteLattice,tc_Tarski_Opotype_Opotype__ext__type(t_a,tc_Product__Type_Ounit)) ).
cnf(cls_Tarski_Odual_Acl_A_58_APartialOrder_0,axiom,
c_in(c_Tarski_Odual(v_cl,t_a),c_Tarski_OPartialOrder,tc_Tarski_Opotype_Opotype__ext__type(t_a,tc_Product__Type_Ounit)) ).
cnf(cls_Tarski_Oglb__dual__lub_0,axiom,
c_Tarski_Oglb(V_S,V_cl,T_a) = c_Tarski_Olub(V_S,c_Tarski_Odual(V_cl,T_a),T_a) ).
cnf(cls_Tarski_Opset_A_Idual_Acl_J_A_61_61_Apset_Acl_0,axiom,
c_Tarski_Opotype_Opset(c_Tarski_Odual(V_cl,T_a),T_a,tc_Product__Type_Ounit) = c_Tarski_Opotype_Opset(V_cl,T_a,tc_Product__Type_Ounit) ).
cnf(cls_Tarski_Or_A_61_61_Aorder_Acl_0,axiom,
v_r = c_Tarski_Opotype_Oorder(v_cl,t_a,tc_Product__Type_Ounit) ).
%------------------------------------------------------------------------------