TPTP Axioms File: LAT004-0.ax
%--------------------------------------------------------------------------
% File : LAT004-0 : TPTP v9.0.0. Released v2.2.0.
% Domain : Lattice Theory (Quasilattices)
% Axioms : Quasilattice theory (equality) axioms
% Version : [McC98b] (equality) axioms.
% English :
% Refs : [McC98] McCune (1998), Email to G. Sutcliffe
% : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq
% Source : [McC98]
% Names :
% Status : Satisfiable
% Syntax : Number of clauses : 8 ( 8 unt; 0 nHn; 0 RR)
% Number of literals : 8 ( 8 equ; 0 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 2 ( 2 usr; 0 con; 2-2 aty)
% Number of variables : 18 ( 0 sgn)
% SPC :
% Comments :
%--------------------------------------------------------------------------
%----Quasilattice theory:
cnf(idempotence_of_meet,axiom,
meet(X,X) = X ).
cnf(idempotence_of_join,axiom,
join(X,X) = X ).
cnf(commutativity_of_meet,axiom,
meet(X,Y) = meet(Y,X) ).
cnf(commutativity_of_join,axiom,
join(X,Y) = join(Y,X) ).
cnf(associativity_of_meet,axiom,
meet(meet(X,Y),Z) = meet(X,meet(Y,Z)) ).
cnf(associativity_of_join,axiom,
join(join(X,Y),Z) = join(X,join(Y,Z)) ).
cnf(quasi_lattice1,axiom,
join(meet(X,join(Y,Z)),meet(X,Y)) = meet(X,join(Y,Z)) ).
cnf(quasi_lattice2,axiom,
meet(join(X,meet(Y,Z)),join(X,Y)) = join(X,meet(Y,Z)) ).
%--------------------------------------------------------------------------