TPTP Axioms File: LAT003-0.ax
%--------------------------------------------------------------------------
% File : LAT003-0 : TPTP v9.0.0. Bugfixed v2.2.1.
% Domain : Lattice Theory (Ortholattices)
% Axioms : Ortholattice theory (equality) axioms
% Version : [McC98b] (equality) axioms.
% English :
% Refs : [McC98a] McCune (1998), Automatic Proofs and Counterexamples f
% : [McC98b] McCune (1998), Email to G. Sutcliffe
% Source : [McC98b]
% Names :
% Status : Satisfiable
% Syntax : Number of clauses : 10 ( 10 unt; 0 nHn; 0 RR)
% Number of literals : 10 ( 10 equ; 0 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 19 ( 2 sgn)
% SPC :
% Comments :
% Bugfixes : v2.2.1 - Added clauses top and bottom.
%--------------------------------------------------------------------------
%----Axioms for an Ortholattice:
cnf(top,axiom,
join(complement(X),X) = n1 ).
cnf(bottom,axiom,
meet(complement(X),X) = n0 ).
cnf(absorption2,axiom,
join(X,meet(X,Y)) = X ).
cnf(commutativity_of_meet,axiom,
meet(X,Y) = meet(Y,X) ).
cnf(commutativity_of_join,axiom,
join(X,Y) = join(Y,X) ).
cnf(associativity_of_meet,axiom,
meet(meet(X,Y),Z) = meet(X,meet(Y,Z)) ).
cnf(associativity_of_join,axiom,
join(join(X,Y),Z) = join(X,join(Y,Z)) ).
cnf(complement_involution,axiom,
complement(complement(X)) = X ).
cnf(join_complement,axiom,
join(X,join(Y,complement(Y))) = join(Y,complement(Y)) ).
cnf(meet_complement,axiom,
meet(X,Y) = complement(join(complement(X),complement(Y))) ).
%--------------------------------------------------------------------------