TPTP Axioms File: LAT001-1.ax
%--------------------------------------------------------------------------
% File : LAT001-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Lattice Theory
% Axioms : Lattice theory modularity (equality) axioms
% Version : [McC88] (equality) axioms.
% English :
% Refs : [Bum65] Bumcroft (1965), Proceedings of the Glasgow Mathematic
% : [McC88] McCune (1988), Challenge Equality Problems in Lattice
% : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr
% Source : [McC88]
% Names :
% Status : Satisfiable
% Syntax : Number of clauses : 5 ( 4 unt; 0 nHn; 0 RR)
% Number of literals : 6 ( 6 equ; 1 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 7 ( 2 sgn)
% SPC :
% Comments : Requires LAT001-0.ax
% : These axioms, with 4 extra redundant axioms about 0 & 1, are
% used in [Wos88] p.217.
%--------------------------------------------------------------------------
%----Include 1 and 0 in the lattice
cnf(x_meet_0,axiom,
meet(X,n0) = n0 ).
cnf(x_join_0,axiom,
join(X,n0) = X ).
cnf(x_meet_1,axiom,
meet(X,n1) = X ).
cnf(x_join_1,axiom,
join(X,n1) = n1 ).
%----Require the lattice to be modular
cnf(modular,axiom,
( meet(X,Z) != X
| meet(Z,join(X,Y)) = join(X,meet(Y,Z)) ) ).
%--------------------------------------------------------------------------