TPTP Axioms File: LAT001-0.ax
%--------------------------------------------------------------------------
% File : LAT001-0 : TPTP v9.0.0. Released v1.0.0.
% Domain : Lattice Theory
% Axioms : Lattice theory (equality) axioms
% Version : [McC88] (equality) axioms.
% English :
% Refs : [Bum65] Bumcroft (1965), Proceedings of the Glasgow Mathematic
% : [McC88] McCune (1988), Challenge Equality Problems in Lattice
% : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr
% Source : [McC88]
% Names :
% Status : Satisfiable
% Syntax : Number of clauses : 8 ( 8 unt; 0 nHn; 0 RR)
% Number of literals : 8 ( 8 equ; 0 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 2 ( 2 usr; 0 con; 2-2 aty)
% Number of variables : 16 ( 2 sgn)
% SPC :
% Comments :
%--------------------------------------------------------------------------
%----The following 8 clauses characterise lattices
cnf(idempotence_of_meet,axiom,
meet(X,X) = X ).
cnf(idempotence_of_join,axiom,
join(X,X) = X ).
cnf(absorption1,axiom,
meet(X,join(X,Y)) = X ).
cnf(absorption2,axiom,
join(X,meet(X,Y)) = X ).
cnf(commutativity_of_meet,axiom,
meet(X,Y) = meet(Y,X) ).
cnf(commutativity_of_join,axiom,
join(X,Y) = join(Y,X) ).
cnf(associativity_of_meet,axiom,
meet(meet(X,Y),Z) = meet(X,meet(Y,Z)) ).
cnf(associativity_of_join,axiom,
join(join(X,Y),Z) = join(X,join(Y,Z)) ).
%--------------------------------------------------------------------------