TPTP Axioms File: KRS001+1.ax
%------------------------------------------------------------------------------
% File : KRS001+1 : TPTP v9.0.0. Bugfixed v5.4.0.
% Domain : Knowledge Representation
% Axioms : SZS success ontology node relationships
% Version : [Sut08] axioms.
% English :
% Refs : [Sut08] Sutcliffe (2008), The SZS Ontologies for Automated Rea
% Source : [Sut08]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 13 ( 2 unt; 0 def)
% Number of atoms : 36 ( 0 equ)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 33 ( 10 ~; 1 |; 11 &)
% ( 6 <=>; 3 =>; 0 <=; 2 <~>)
% Maximal formula depth : 9 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 7 ( 7 usr; 0 prp; 2-3 aty)
% Number of functors : 1 ( 1 usr; 0 con; 1-1 aty)
% Number of variables : 45 ( 23 !; 22 ?)
% SPC :
% Comments :
% Bugfixes : v5.4.0 - Added mixed_pair axiom.
%------------------------------------------------------------------------------
fof(mighta,axiom,
! [S1,S2] :
( ? [Ax,C] :
( status(Ax,C,S1)
& status(Ax,C,S2) )
<=> mighta(S1,S2) ) ).
fof(isa,axiom,
! [S1,S2] :
( ! [Ax,C] :
( status(Ax,C,S1)
=> status(Ax,C,S2) )
<=> isa(S1,S2) ) ).
fof(nota,axiom,
! [S1,S2] :
( ? [Ax,C] :
( status(Ax,C,S1)
& ~ status(Ax,C,S2) )
<=> nota(S1,S2) ) ).
fof(nevera,axiom,
! [S1,S2] :
( ! [Ax,C] :
( status(Ax,C,S1)
=> ~ status(Ax,C,S2) )
<=> nevera(S1,S2) ) ).
fof(xora,axiom,
! [S1,S2] :
( ! [Ax,C] :
( status(Ax,C,S1)
<~> status(Ax,C,S2) )
<=> xora(S1,S2) ) ).
fof(completeness,axiom,
! [I,F] :
( model(I,F)
<~> model(I,not(F)) ) ).
fof(not,axiom,
! [I,F] :
( model(I,F)
<=> ~ model(I,not(F)) ) ).
fof(tautology,axiom,
? [F] :
! [I] : model(I,F) ).
fof(satisfiable,axiom,
? [F] :
( ? [I1] : model(I1,F)
& ? [I2] : ~ model(I2,F) ) ).
fof(contradiction,axiom,
? [F] :
! [I] : ~ model(I,F) ).
%----There exist axiom-conjecture pairs for which some interpretations make
%----both true and some interpretations make neither true.
fof(sat_non_taut_pair,axiom,
? [Ax,C] :
( ? [I1] :
( model(I1,Ax)
& model(I1,C) )
& ? [I2] :
( ~ model(I2,Ax)
| ~ model(I2,C) ) ) ).
%----There exist axiom conjecture pairs for which some interpretations make
%----the axioms true, every interpretation that makes the axioms true makes
%----the conjecture true, some interpretations make only the conjecture true,
%----and some interpretations don't make the conjecture true.
fof(mixed_pair,axiom,
? [Ax,C] :
( ? [I1] : model(I1,Ax)
& ! [I2] :
( model(I2,Ax)
=> model(I2,C) )
& ? [I3] :
( ~ model(I3,Ax)
& model(I3,C) )
& ? [I4] : ~ model(I4,C) ) ).
%----There exist satisfiable axioms that do not imply a satisfiable conjecture
fof(non_thm_spt,axiom,
? [I1,Ax,C] :
( model(I1,Ax)
& ~ model(I1,C)
& ? [I2] : model(I2,C) ) ).
%------------------------------------------------------------------------------