TPTP Axioms File: KRS001+0.ax
%------------------------------------------------------------------------------
% File : KRS001+0 : TPTP v9.0.0. Released v3.6.0.
% Domain : Knowledge Representation
% Axioms : SZS success ontology nodes
% Version : [Sut08] axioms.
% English :
% Refs : [Sut08] Sutcliffe (2008), The SZS Ontologies for Automated Rea
% Source : [TPTP]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 19 ( 0 unt; 0 def)
% Number of atoms : 70 ( 0 equ)
% Maximal formula atoms : 7 ( 3 avg)
% Number of connectives : 63 ( 12 ~; 0 |; 24 &)
% ( 22 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 7 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 20 ( 20 usr; 19 con; 0-1 aty)
% Number of variables : 77 ( 49 !; 28 ?)
% SPC :
% Comments :
%------------------------------------------------------------------------------
fof(unp,axiom,
! [Ax,C] :
( ( ~ ? [I1] : model(I1,Ax)
=> ~ ? [I2] : model(I2,C) )
<=> status(Ax,C,unp) ) ).
fof(sap,axiom,
! [Ax,C] :
( ( ? [I1] : model(I1,Ax)
=> ? [I2] : model(I2,C) )
<=> status(Ax,C,sap) ) ).
fof(esa,axiom,
! [Ax,C] :
( ( ? [I1] : model(I1,Ax)
<=> ? [I2] : model(I2,C) )
<=> status(Ax,C,esa) ) ).
fof(sat,axiom,
! [Ax,C] :
( ? [I1] :
( model(I1,Ax)
& model(I1,C) )
<=> status(Ax,C,sat) ) ).
fof(thm,axiom,
! [Ax,C] :
( ! [I1] :
( model(I1,Ax)
=> model(I1,C) )
<=> status(Ax,C,thm) ) ).
fof(eqv,axiom,
! [Ax,C] :
( ( ? [I1] : model(I1,Ax)
& ! [I2] :
( model(I2,Ax)
<=> model(I2,C) ) )
<=> status(Ax,C,eqv) ) ).
fof(tac,axiom,
! [Ax,C] :
( ( ? [I1] : model(I1,Ax)
& ! [I2] : model(I2,C) )
<=> status(Ax,C,tac) ) ).
fof(wec,axiom,
! [Ax,C] :
( ( ? [I1] : model(I1,Ax)
& ! [I2] :
( model(I2,Ax)
=> model(I2,C) )
& ? [I3] :
( model(I3,C)
& ~ model(I3,Ax) ) )
<=> status(Ax,C,wec) ) ).
fof(eth,axiom,
! [Ax,C] :
( ( ? [I1] : model(I1,Ax)
& ? [I2] : ~ model(I2,Ax)
& ! [I3] :
( model(I3,Ax)
<=> model(I3,C) ) )
<=> status(Ax,C,eth) ) ).
fof(tau,axiom,
! [Ax,C] :
( ! [I1] :
( model(I1,Ax)
& model(I1,C) )
<=> status(Ax,C,tau) ) ).
fof(wtc,axiom,
! [Ax,C] :
( ( ? [I1] : model(I1,Ax)
& ? [I2] : ~ model(I2,Ax)
& ! [I3] : model(I3,C) )
<=> status(Ax,C,wtc) ) ).
fof(wth,axiom,
! [Ax,C] :
( ( ? [I1] : model(I1,Ax)
& ! [I2] :
( model(I2,Ax)
=> model(I2,C) )
& ? [I3] :
( model(I3,C)
& ~ model(I3,Ax) )
& ? [I4] : ~ model(I4,C) )
<=> status(Ax,C,wth) ) ).
fof(cax,axiom,
! [Ax,C] :
( ~ ? [I1] : model(I1,Ax)
<=> status(Ax,C,cax) ) ).
fof(sca,axiom,
! [Ax,C] :
( ( ~ ? [I1] : model(I1,Ax)
& ? [I2] : model(I2,C) )
<=> status(Ax,C,sca) ) ).
fof(tca,axiom,
! [Ax,C] :
( ( ~ ? [I1] : model(I1,Ax)
& ! [I2] : model(I2,C) )
<=> status(Ax,C,tca) ) ).
fof(wca,axiom,
! [Ax,C] :
( ( ~ ? [I1] : model(I1,Ax)
& ? [I2] : model(I2,C)
& ? [I3] : ~ model(I3,C) )
<=> status(Ax,C,wca) ) ).
fof(csa,axiom,
! [Ax,C] :
( ? [I1] :
( model(I1,Ax)
& model(I1,not(C)) )
<=> status(Ax,C,csa) ) ).
fof(uns,axiom,
! [Ax,C] :
( ( ! [I1] : model(I1,Ax)
& ! [I2] : model(I2,not(C)) )
<=> status(Ax,C,uns) ) ).
fof(noc,axiom,
! [Ax,C] :
( ( ? [I1] :
( model(I1,Ax)
& model(I1,C) )
& ? [I2] :
( model(I2,Ax)
& model(I2,not(C)) ) )
<=> status(Ax,C,noc) ) ).
%------------------------------------------------------------------------------