TPTP Axioms File: KRS001+0.ax


%------------------------------------------------------------------------------
% File     : KRS001+0 : TPTP v9.0.0. Released v3.6.0.
% Domain   : Knowledge Representation
% Axioms   : SZS success ontology nodes
% Version  : [Sut08] axioms.
% English  :

% Refs     : [Sut08] Sutcliffe (2008), The SZS Ontologies for Automated Rea
% Source   : [TPTP]
% Names    :

% Status   : Satisfiable
% Syntax   : Number of formulae    :   19 (   0 unt;   0 def)
%            Number of atoms       :   70 (   0 equ)
%            Maximal formula atoms :    7 (   3 avg)
%            Number of connectives :   63 (  12   ~;   0   |;  24   &)
%                                         (  22 <=>;   5  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (   7 avg)
%            Maximal term depth    :    2 (   1 avg)
%            Number of predicates  :    2 (   2 usr;   0 prp; 2-3 aty)
%            Number of functors    :   20 (  20 usr;  19 con; 0-1 aty)
%            Number of variables   :   77 (  49   !;  28   ?)
% SPC      : 

% Comments :
%------------------------------------------------------------------------------
fof(unp,axiom,
    ! [Ax,C] :
      ( ( ~ ? [I1] : model(I1,Ax)
       => ~ ? [I2] : model(I2,C) )
    <=> status(Ax,C,unp) ) ).

fof(sap,axiom,
    ! [Ax,C] :
      ( ( ? [I1] : model(I1,Ax)
       => ? [I2] : model(I2,C) )
    <=> status(Ax,C,sap) ) ).

fof(esa,axiom,
    ! [Ax,C] :
      ( ( ? [I1] : model(I1,Ax)
      <=> ? [I2] : model(I2,C) )
    <=> status(Ax,C,esa) ) ).

fof(sat,axiom,
    ! [Ax,C] :
      ( ? [I1] :
          ( model(I1,Ax)
          & model(I1,C) )
    <=> status(Ax,C,sat) ) ).

fof(thm,axiom,
    ! [Ax,C] :
      ( ! [I1] :
          ( model(I1,Ax)
         => model(I1,C) )
    <=> status(Ax,C,thm) ) ).

fof(eqv,axiom,
    ! [Ax,C] :
      ( ( ? [I1] : model(I1,Ax)
        & ! [I2] :
            ( model(I2,Ax)
          <=> model(I2,C) ) )
    <=> status(Ax,C,eqv) ) ).

fof(tac,axiom,
    ! [Ax,C] :
      ( ( ? [I1] : model(I1,Ax)
        & ! [I2] : model(I2,C) )
    <=> status(Ax,C,tac) ) ).

fof(wec,axiom,
    ! [Ax,C] :
      ( ( ? [I1] : model(I1,Ax)
        & ! [I2] :
            ( model(I2,Ax)
           => model(I2,C) )
        & ? [I3] :
            ( model(I3,C)
            & ~ model(I3,Ax) ) )
    <=> status(Ax,C,wec) ) ).

fof(eth,axiom,
    ! [Ax,C] :
      ( ( ? [I1] : model(I1,Ax)
        & ? [I2] : ~ model(I2,Ax)
        & ! [I3] :
            ( model(I3,Ax)
          <=> model(I3,C) ) )
    <=> status(Ax,C,eth) ) ).

fof(tau,axiom,
    ! [Ax,C] :
      ( ! [I1] :
          ( model(I1,Ax)
          & model(I1,C) )
    <=> status(Ax,C,tau) ) ).

fof(wtc,axiom,
    ! [Ax,C] :
      ( ( ? [I1] : model(I1,Ax)
        & ? [I2] : ~ model(I2,Ax)
        & ! [I3] : model(I3,C) )
    <=> status(Ax,C,wtc) ) ).

fof(wth,axiom,
    ! [Ax,C] :
      ( ( ? [I1] : model(I1,Ax)
        & ! [I2] :
            ( model(I2,Ax)
           => model(I2,C) )
        & ? [I3] :
            ( model(I3,C)
            & ~ model(I3,Ax) )
        & ? [I4] : ~ model(I4,C) )
    <=> status(Ax,C,wth) ) ).

fof(cax,axiom,
    ! [Ax,C] :
      ( ~ ? [I1] : model(I1,Ax)
    <=> status(Ax,C,cax) ) ).

fof(sca,axiom,
    ! [Ax,C] :
      ( ( ~ ? [I1] : model(I1,Ax)
        & ? [I2] : model(I2,C) )
    <=> status(Ax,C,sca) ) ).

fof(tca,axiom,
    ! [Ax,C] :
      ( ( ~ ? [I1] : model(I1,Ax)
        & ! [I2] : model(I2,C) )
    <=> status(Ax,C,tca) ) ).

fof(wca,axiom,
    ! [Ax,C] :
      ( ( ~ ? [I1] : model(I1,Ax)
        & ? [I2] : model(I2,C)
        & ? [I3] : ~ model(I3,C) )
    <=> status(Ax,C,wca) ) ).

fof(csa,axiom,
    ! [Ax,C] :
      ( ? [I1] :
          ( model(I1,Ax)
          & model(I1,not(C)) )
    <=> status(Ax,C,csa) ) ).

fof(uns,axiom,
    ! [Ax,C] :
      ( ( ! [I1] : model(I1,Ax)
        & ! [I2] : model(I2,not(C)) )
    <=> status(Ax,C,uns) ) ).

fof(noc,axiom,
    ! [Ax,C] :
      ( ( ? [I1] :
            ( model(I1,Ax)
            & model(I1,C) )
        & ? [I2] :
            ( model(I2,Ax)
            & model(I2,not(C)) ) )
    <=> status(Ax,C,noc) ) ).

%------------------------------------------------------------------------------