TPTP Axioms File: KLE002+0.ax
%------------------------------------------------------------------------------
% File : KLE002+0 : TPTP v9.0.0. Released v3.6.0.
% Domain : Kleene algebra
% Axioms : Kleene algebra
% Version : [Hoe08] axioms.
% English :
% Refs : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 16 ( 13 unt; 0 def)
% Number of atoms : 19 ( 12 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 3 ( 0 ~; 0 |; 0 &)
% ( 1 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 30 ( 30 !; 0 ?)
% SPC :
% Comments :
%------------------------------------------------------------------------------
%----Additive idempotent monoid
fof(additive_commutativity,axiom,
! [A,B] : addition(A,B) = addition(B,A) ).
fof(additive_associativity,axiom,
! [C,B,A] : addition(A,addition(B,C)) = addition(addition(A,B),C) ).
fof(additive_identity,axiom,
! [A] : addition(A,zero) = A ).
fof(additive_idempotence,axiom,
! [A] : addition(A,A) = A ).
%----Multiplicative and commutative monoid
fof(multiplicative_associativity,axiom,
! [A,B,C] : multiplication(A,multiplication(B,C)) = multiplication(multiplication(A,B),C) ).
fof(multiplicative_right_identity,axiom,
! [A] : multiplication(A,one) = A ).
fof(multiplicative_left_identity,axiom,
! [A] : multiplication(one,A) = A ).
%----Distributivity laws
fof(right_distributivity,axiom,
! [A,B,C] : multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)) ).
fof(left_distributivity,axiom,
! [A,B,C] : multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)) ).
%----Annihilation
fof(right_annihilation,axiom,
! [A] : multiplication(A,zero) = zero ).
fof(left_annihilation,axiom,
! [A] : multiplication(zero,A) = zero ).
%----Order
fof(order,axiom,
! [A,B] :
( leq(A,B)
<=> addition(A,B) = B ) ).
%----Finite iteration (star)
%----Unfold laws
fof(star_unfold_right,axiom,
! [A] : leq(addition(one,multiplication(A,star(A))),star(A)) ).
fof(star_unfold_left,axiom,
! [A] : leq(addition(one,multiplication(star(A),A)),star(A)) ).
%----Induction laws
fof(star_induction_left,axiom,
! [A,B,C] :
( leq(addition(multiplication(A,B),C),B)
=> leq(multiplication(star(A),C),B) ) ).
fof(star_induction_right,axiom,
! [A,B,C] :
( leq(addition(multiplication(A,B),C),A)
=> leq(multiplication(C,star(B)),A) ) ).
%------------------------------------------------------------------------------