TPTP Axioms File: KLE001+6.ax
%------------------------------------------------------------------------------
% File : KLE001+6 : TPTP v9.0.0. Released v3.6.0.
% Domain : Kleene Algebra
% Axioms : Modal operators
% Version : [Hoe08] axioms.
% English :
% Refs : [DMS06] Desharnais et al. (2006), Kleene Algebra with Domain
% : [MS06] Moeller & Struth (2006), Algebras of Modal Operators a
% : [DS08] Desharnais & Struth (2008), Modal Semirings Revisited
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 6 ( 6 unt; 0 def)
% Number of atoms : 6 ( 6 equ)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 0 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 3 ( 3 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 10 ( 10 usr; 0 con; 1-2 aty)
% Number of variables : 11 ( 11 !; 0 ?)
% SPC :
% Comments : Requires KLE001+4.ax
% : With KLE001+0 and KLE001+4.ax generates modal semirings
% With KLE002+0 and KLE001+4.ax generates modal Kleene Algebra
% With KLE003+0 and KLE001+4.ax generates modal Omega Algebra
% : Defines forward/backward box and diamond (and domain).
%------------------------------------------------------------------------------
%----Standard axioms for forward/backward box and diamond
fof(complement,axiom,
! [X0] : c(X0) = antidomain(domain(X0)) ).
fof(domain_difference,axiom,
! [X0,X1] : domain_difference(X0,X1) = multiplication(domain(X0),antidomain(X1)) ).
fof(forward_diamond,axiom,
! [X0,X1] : forward_diamond(X0,X1) = domain(multiplication(X0,domain(X1))) ).
fof(backward_diamond,axiom,
! [X0,X1] : backward_diamond(X0,X1) = codomain(multiplication(codomain(X1),X0)) ).
fof(forward_box,axiom,
! [X0,X1] : forward_box(X0,X1) = c(forward_diamond(X0,c(X1))) ).
fof(backward_box,axiom,
! [X0,X1] : backward_box(X0,X1) = c(backward_diamond(X0,c(X1))) ).
%------------------------------------------------------------------------------