TPTP Axioms File: KLE001+5.ax
%------------------------------------------------------------------------------
% File : KLE001+5 : TPTP v9.0.0. Released v3.6.0.
% Domain : Kleene Algebra
% Axioms : Domain (not Boolean domain!)
% Version : [Hoe08] axioms.
% English :
% Refs : [DS08] Desharnais & Struth (2008), Modal Semirings Revisited
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 5 ( 5 unt; 0 def)
% Number of atoms : 5 ( 5 equ)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 0 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 3 ( 2 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 6 ( 6 !; 0 ?)
% SPC :
% Comments : The domain algebra is not necessarily Boolean
% : Requires KLE001+0.ax, KLE002+0.ax or KLE003+0.ax
% : Combined with KLE001+0 generates Idempotent semirings with tests
% Combined with KLE002+0 generates Kleene Algebra with tests
% Combined with KLE003+0 generates Omega Algebra with tests
%------------------------------------------------------------------------------
%----Domain axioms (a la Desharnais & Struth)
fof(domain1,axiom,
! [X0] : addition(X0,multiplication(domain(X0),X0)) = multiplication(domain(X0),X0) ).
fof(domain2,axiom,
! [X0,X1] : domain(multiplication(X0,X1)) = domain(multiplication(X0,domain(X1))) ).
fof(domain3,axiom,
! [X0] : addition(domain(X0),one) = one ).
fof(domain4,axiom,
domain(zero) = zero ).
fof(domain5,axiom,
! [X0,X1] : domain(addition(X0,X1)) = addition(domain(X0),domain(X1)) ).
%------------------------------------------------------------------------------