TPTP Axioms File: HEN003-0.ax
%--------------------------------------------------------------------------
% File : HEN003-0 : TPTP v9.0.0. Released v1.0.0.
% Domain : Henkin Models
% Axioms : Henkin model (equality) axioms
% Version : [MOW76] (equality) axioms :
% Reduced > Complete.
% English :
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [ANL]
% Names :
% Status : Satisfiable
% Syntax : Number of clauses : 5 ( 4 unt; 0 nHn; 1 RR)
% Number of literals : 7 ( 7 equ; 2 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 3 ( 3 usr; 2 con; 0-2 aty)
% Number of variables : 9 ( 3 sgn)
% SPC :
% Comments : less_equal replaced by divides
%--------------------------------------------------------------------------
%----A0: Definition of less_equal, used to replace all occurrences
%----of less_equal(x,y)
%---- --less_equal(x,y) | (divide(x,y) = zero).
%---- (divide(x,y) != zero) | ++less_equal(x,y).
%----A1: x/y <= x
cnf(quotient_smaller_than_numerator,axiom,
divide(divide(X,Y),X) = zero ).
%----A2: (x/z) / (y/z) <= (x/y) / z
cnf(quotient_property,axiom,
divide(divide(divide(X,Z),divide(Y,Z)),divide(divide(X,Y),Z)) = zero ).
%----A3: 0<=x NOTE: this axiom is dependant
cnf(zero_is_smallest,axiom,
divide(zero,X) = zero ).
%----A4: x <= y and y <= x implies that x = y
cnf(divide_and_equal,axiom,
( divide(X,Y) != zero
| divide(Y,X) != zero
| X = Y ) ).
%----A5: x <= 1 (Thus an implicative model with unit )
cnf(identity_is_largest,axiom,
divide(X,identity) = zero ).
%----Implicit in equality formulation: '/' is well defined
%--------------------------------------------------------------------------