TPTP Axioms File: HEN001-0.ax
%--------------------------------------------------------------------------
% File : HEN001-0 : TPTP v9.0.0. Released v1.0.0.
% Domain : Henkin Models
% Axioms : Henkin model axioms
% Version : [MOW76] axioms.
% English :
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [MOW76]
% Names :
% Status : Satisfiable
% Syntax : Number of clauses : 9 ( 3 unt; 0 nHn; 6 RR)
% Number of literals : 21 ( 2 equ; 12 neg)
% Maximal clause size : 6 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 3 ( 3 usr; 2 con; 0-2 aty)
% Number of variables : 25 ( 3 sgn)
% SPC :
% Comments :
%--------------------------------------------------------------------------
%----A0: definition of less than or equal to
cnf(quotient_less_equal,axiom,
( ~ less_equal(X,Y)
| quotient(X,Y,zero) ) ).
cnf(less_equal_quotient,axiom,
( ~ quotient(X,Y,zero)
| less_equal(X,Y) ) ).
%----A1: x/y <= x
cnf(divisor_existence,axiom,
( ~ quotient(X,Y,Z)
| less_equal(Z,X) ) ).
%----A2: (x/z) / (y/z) <= (x/y) / z
cnf(quotient_property,axiom,
( ~ quotient(X,Y,V1)
| ~ quotient(Y,Z,V2)
| ~ quotient(X,Z,V3)
| ~ quotient(V3,V2,V4)
| ~ quotient(V1,Z,V5)
| less_equal(V4,V5) ) ).
%----A3: 0 <= x
cnf(zero_is_smallest,axiom,
less_equal(zero,X) ).
%----A4: x <= y and y <= x implies that x = y
cnf(less_equal_and_equal,axiom,
( ~ less_equal(X,Y)
| ~ less_equal(Y,X)
| X = Y ) ).
%----A5: x <= identity (Thus an implicative model with unit 1)
cnf(identity_is_largest,axiom,
less_equal(X,identity) ).
%----closure of '/'
cnf(closure,axiom,
quotient(X,Y,divide(X,Y)) ).
%----'/' is well defined
cnf(well_defined,axiom,
( ~ quotient(X,Y,Z)
| ~ quotient(X,Y,W)
| Z = W ) ).
%--------------------------------------------------------------------------