TPTP Axioms File: GRP006-0.ax
%--------------------------------------------------------------------------
% File : GRP006-0 : TPTP v9.0.0. Bugfixed v1.2.1.
% Domain : Group Theory (Named groups)
% Axioms : Group theory (Named groups) axioms
% Version : [MOW76] axioms.
% English :
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [ANL]
% Names :
% Status : Satisfiable
% Syntax : Number of clauses : 11 ( 5 unt; 0 nHn; 6 RR)
% Number of literals : 24 ( 1 equ; 13 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-4 aty)
% Number of functors : 3 ( 3 usr; 0 con; 1-3 aty)
% Number of variables : 36 ( 0 sgn)
% SPC :
% Comments : [Ver93] pointed out that the traditional labelling of the
% closure and well_definedness axioms was wrong. The correct
% labelling indicates that product is a total function.
% Bugfixes : v1.2.1 - Clause associativity1 fixed. This is a typo in
% [MOW76], and is wrong in [ANL].
%--------------------------------------------------------------------------
cnf(identity_in_group,axiom,
group_member(identity_for(Xg),Xg) ).
cnf(left_identity,axiom,
product(Xg,identity_for(Xg),X,X) ).
cnf(right_identity,axiom,
product(Xg,X,identity_for(Xg),X) ).
cnf(inverse_in_group,axiom,
( ~ group_member(X,Xg)
| group_member(inverse(Xg,X),Xg) ) ).
cnf(left_inverse,axiom,
product(Xg,inverse(Xg,X),X,identity_for(Xg)) ).
cnf(right_inverse,axiom,
product(Xg,X,inverse(Xg,X),identity_for(Xg)) ).
%----These axioms are called closure or totality in some axiomatisations
cnf(total_function1_1,axiom,
( ~ group_member(X,Xg)
| ~ group_member(Y,Xg)
| product(Xg,X,Y,multiply(Xg,X,Y)) ) ).
cnf(total_function1_2,axiom,
( ~ group_member(X,Xg)
| ~ group_member(Y,Xg)
| group_member(multiply(Xg,X,Y),Xg) ) ).
%----This axiom is called well_definedness in some axiomatisations
cnf(total_function2,axiom,
( ~ product(Xg,X,Y,Z)
| ~ product(Xg,X,Y,W)
| W = Z ) ).
cnf(associativity1,axiom,
( ~ product(Xg,X,Y,Xy)
| ~ product(Xg,Y,Z,Yz)
| ~ product(Xg,Xy,Z,Xyz)
| product(Xg,X,Yz,Xyz) ) ).
cnf(associativity2,axiom,
( ~ product(Xg,X,Y,Xy)
| ~ product(Xg,Y,Z,Yz)
| ~ product(Xg,X,Yz,Xyz)
| product(Xg,Xy,Z,Xyz) ) ).
%--------------------------------------------------------------------------