TPTP Axioms File: GRP004-2.ax


%--------------------------------------------------------------------------
% File     : GRP004-2 : TPTP v9.0.0. Bugfixed v1.2.0.
% Domain   : Group Theory (Lattice Ordered)
% Axioms   : Lattice ordered group (equality) axioms
% Version  : [Fuc94] (equality) axioms.
% English  :

% Refs     : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri
%          : [Sch95] Schulz (1995), Explanation Based Learning for Distribu
% Source   : [Sch95]
% Names    :

% Status   : Satisfiable
% Syntax   : Number of clauses     :   12 (  12 unt;   0 nHn;   0 RR)
%            Number of literals    :   12 (  12 equ;   0 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    3 (   2 avg)
%            Number of predicates  :    1 (   0 usr;   0 prp; 2-2 aty)
%            Number of functors    :    3 (   3 usr;   0 con; 2-2 aty)
%            Number of variables   :   28 (   2 sgn)
% SPC      : 

% Comments : Requires GRP004-0.ax
%--------------------------------------------------------------------------
%----Specification of the least upper bound and greatest lower bound
cnf(symmetry_of_glb,axiom,
    greatest_lower_bound(X,Y) = greatest_lower_bound(Y,X) ).

cnf(symmetry_of_lub,axiom,
    least_upper_bound(X,Y) = least_upper_bound(Y,X) ).

cnf(associativity_of_glb,axiom,
    greatest_lower_bound(X,greatest_lower_bound(Y,Z)) = greatest_lower_bound(greatest_lower_bound(X,Y),Z) ).

cnf(associativity_of_lub,axiom,
    least_upper_bound(X,least_upper_bound(Y,Z)) = least_upper_bound(least_upper_bound(X,Y),Z) ).

cnf(idempotence_of_lub,axiom,
    least_upper_bound(X,X) = X ).

cnf(idempotence_of_gld,axiom,
    greatest_lower_bound(X,X) = X ).

cnf(lub_absorbtion,axiom,
    least_upper_bound(X,greatest_lower_bound(X,Y)) = X ).

cnf(glb_absorbtion,axiom,
    greatest_lower_bound(X,least_upper_bound(X,Y)) = X ).

%----Monotony of multiply
cnf(monotony_lub1,axiom,
    multiply(X,least_upper_bound(Y,Z)) = least_upper_bound(multiply(X,Y),multiply(X,Z)) ).

cnf(monotony_glb1,axiom,
    multiply(X,greatest_lower_bound(Y,Z)) = greatest_lower_bound(multiply(X,Y),multiply(X,Z)) ).

cnf(monotony_lub2,axiom,
    multiply(least_upper_bound(Y,Z),X) = least_upper_bound(multiply(Y,X),multiply(Z,X)) ).

cnf(monotony_glb2,axiom,
    multiply(greatest_lower_bound(Y,Z),X) = greatest_lower_bound(multiply(Y,X),multiply(Z,X)) ).

%--------------------------------------------------------------------------