TPTP Axioms File: GRP003-0.ax
%--------------------------------------------------------------------------
% File : GRP003-0 : TPTP v9.0.0. Released v1.0.0.
% Domain : Group Theory
% Axioms : Group theory axioms
% Version : [MOW76] axioms.
% English :
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr
% : [Ver93] Veroff (1993), Email to G. Sutcliffe
% Source : [MOW76]
% Names :
% Status : Satisfiable
% Syntax : Number of clauses : 8 ( 5 unt; 0 nHn; 3 RR)
% Number of literals : 16 ( 1 equ; 8 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-3 aty)
% Number of functors : 3 ( 3 usr; 1 con; 0-2 aty)
% Number of variables : 22 ( 0 sgn)
% SPC :
% Comments : [Ver93] pointed out that the traditional labelling of the
% closure and well_definedness axioms was wrong. The correct
% labelling indicates that product is a total function.
% : These axioms are used in [Wos88] p.184.
%--------------------------------------------------------------------------
cnf(left_identity,axiom,
product(identity,X,X) ).
cnf(right_identity,axiom,
product(X,identity,X) ).
cnf(left_inverse,axiom,
product(inverse(X),X,identity) ).
cnf(right_inverse,axiom,
product(X,inverse(X),identity) ).
%----This axiom is called closure or totality in some axiomatisations
cnf(total_function1,axiom,
product(X,Y,multiply(X,Y)) ).
%----This axiom is called well_definedness in some axiomatisations
cnf(total_function2,axiom,
( ~ product(X,Y,Z)
| ~ product(X,Y,W)
| Z = W ) ).
cnf(associativity1,axiom,
( ~ product(X,Y,U)
| ~ product(Y,Z,V)
| ~ product(U,Z,W)
| product(X,V,W) ) ).
cnf(associativity2,axiom,
( ~ product(X,Y,U)
| ~ product(Y,Z,V)
| ~ product(X,V,W)
| product(U,Z,W) ) ).
%--------------------------------------------------------------------------