TPTP Axioms File: GRP003+0.ax
%--------------------------------------------------------------------------
% File : GRP003+0 : TPTP v9.0.0. Released v2.5.0.
% Domain : Group Theory
% Axioms : Group theory axioms
% Version : [MOW76] axioms.
% English :
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr
% : [Ver93] Veroff (1993), Email to G. Sutcliffe
% Source : TPTP
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 8 ( 5 unt; 0 def)
% Number of atoms : 16 ( 1 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 8 ( 0 ~; 0 |; 5 &)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-3 aty)
% Number of functors : 3 ( 3 usr; 1 con; 0-2 aty)
% Number of variables : 22 ( 22 !; 0 ?)
% SPC :
% Comments :
%--------------------------------------------------------------------------
fof(left_identity,axiom,
! [X] : product(identity,X,X) ).
fof(right_identity,axiom,
! [X] : product(X,identity,X) ).
fof(left_inverse,axiom,
! [X] : product(inverse(X),X,identity) ).
fof(right_inverse,axiom,
! [X] : product(X,inverse(X),identity) ).
%----This axiom is called closure or totality in some axiomatisations
fof(total_function1,axiom,
! [X,Y] : product(X,Y,multiply(X,Y)) ).
%----This axiom is called well_definedness in some axiomatisations
fof(total_function2,axiom,
! [W,X,Y,Z] :
( ( product(X,Y,Z)
& product(X,Y,W) )
=> Z = W ) ).
fof(associativity1,axiom,
! [X,Y,Z,U,V,W] :
( ( product(X,Y,U)
& product(Y,Z,V)
& product(U,Z,W) )
=> product(X,V,W) ) ).
fof(associativity2,axiom,
! [X,Y,Z,U,V,W] :
( ( product(X,Y,U)
& product(Y,Z,V)
& product(X,V,W) )
=> product(U,Z,W) ) ).
%--------------------------------------------------------------------------