TPTP Axioms File: GEO009+0.ax
%------------------------------------------------------------------------------
% File : GEO009+0 : TPTP v9.0.0. Released v4.0.0.
% Domain : Geometry (Constructive)
% Axioms : Ordered affine geometry with definitions
% Version : [vPl95] axioms.
% English :
% Refs : [vPl95] von Plato (1995), The Axioms of Constructive Geometry
% Source : [ILTP]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 36 ( 6 unt; 0 def)
% Number of atoms : 109 ( 0 equ)
% Maximal formula atoms : 10 ( 3 avg)
% Number of connectives : 85 ( 12 ~; 22 |; 24 &)
% ( 10 <=>; 17 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 18 ( 18 usr; 0 prp; 1-4 aty)
% Number of functors : 4 ( 4 usr; 0 con; 1-2 aty)
% Number of variables : 81 ( 81 !; 0 ?)
% SPC :
% Comments :
%------------------------------------------------------------------------------
fof(a1_defns,axiom,
! [X,Y] :
( unequally_directed_opposite_lines(X,Y)
<=> unequally_directed_lines(X,reverse_line(Y)) ) ).
fof(a2_defns,axiom,
! [X,Y] :
( right_apart_point(X,Y)
<=> left_apart_point(X,reverse_line(Y)) ) ).
fof(a3_defns,axiom,
! [X,Y] :
( right_convergent_lines(X,Y)
<=> left_convergent_lines(X,reverse_line(Y)) ) ).
fof(a4_defns,axiom,
! [X,Y] :
( equally_directed_lines(X,Y)
<=> ~ unequally_directed_lines(X,Y) ) ).
fof(a5_defns,axiom,
! [X,Y] :
( equally_directed_opposite_lines(X,Y)
<=> ~ unequally_directed_opposite_lines(X,Y) ) ).
fof(a6_defns,axiom,
! [A,L] :
( apart_point_and_line(A,L)
<=> ( left_apart_point(A,L)
| right_apart_point(A,L) ) ) ).
fof(a7_defns,axiom,
! [L,M] :
( convergent_lines(L,M)
<=> ( unequally_directed_lines(L,M)
& unequally_directed_opposite_lines(L,M) ) ) ).
fof(a8_defns,axiom,
! [A,B,L] :
( divides_points(L,A,B)
<=> ( ( left_apart_point(A,L)
& right_apart_point(B,L) )
| ( right_apart_point(A,L)
& left_apart_point(B,L) ) ) ) ).
fof(ax4_defns,axiom,
! [L,A,B] :
( before_on_line(L,A,B)
<=> ( distinct_points(A,B)
& incident_point_and_line(A,L)
& incident_point_and_line(B,L)
& equally_directed_lines(L,line_connecting(A,B)) ) ) ).
fof(a9_defns,axiom,
! [L,A,B,C] :
( between_on_line(L,A,B,C)
<=> ( ( before_on_line(L,A,B)
& before_on_line(L,B,C) )
| ( before_on_line(L,C,B)
& before_on_line(L,B,A) ) ) ) ).
fof(ax1_basics,axiom,
! [A] : ~ distinct_points(A,A) ).
fof(ax2_basics,axiom,
! [A,B,C] :
( distinct_points(A,B)
=> ( distinct_points(A,C)
| distinct_points(B,C) ) ) ).
fof(ax3_basics,axiom,
! [L] : ~ distinct_lines(L,L) ).
fof(ax4_basics,axiom,
! [L,M,N] :
( distinct_lines(L,M)
=> ( distinct_lines(L,N)
| distinct_lines(M,N) ) ) ).
fof(ax5_basics,axiom,
! [L] : equally_directed_lines(L,L) ).
fof(ax6_basics,axiom,
! [L,M,N] :
( unequally_directed_lines(L,M)
=> ( unequally_directed_lines(L,N)
| unequally_directed_lines(M,N) ) ) ).
fof(ax7_basics,axiom,
! [L,M,N] :
( ( unequally_directed_lines(L,M)
& unequally_directed_lines(L,reverse_line(M)) )
=> ( ( unequally_directed_lines(L,N)
& unequally_directed_lines(L,reverse_line(N)) )
| ( unequally_directed_lines(M,N)
& unequally_directed_lines(M,reverse_line(N)) ) ) ) ).
fof(ax8_basics,axiom,
! [L,M] :
( unequally_directed_lines(L,M)
| unequally_directed_lines(L,reverse_line(M)) ) ).
fof(ax9_basics,axiom,
! [L,M] :
( ( unequally_directed_lines(L,M)
& unequally_directed_lines(L,reverse_line(M)) )
=> ( left_convergent_lines(L,M)
| left_convergent_lines(L,reverse_line(M)) ) ) ).
fof(ax10_basics,axiom,
! [A,L] :
~ ( left_apart_point(A,L)
| left_apart_point(A,reverse_line(L)) ) ).
fof(ax11_basics,axiom,
! [L,M] :
~ ( left_convergent_lines(L,M)
| left_convergent_lines(L,reverse_line(M)) ) ).
fof(ax1_cons_objs,axiom,
! [A,B] :
( ( point(A)
& point(B)
& distinct_points(A,B) )
=> line(line_connecting(A,B)) ) ).
fof(ax2_cons_objs,axiom,
! [L,M] :
( ( line(L)
& line(M)
& unequally_directed_lines(L,M)
& unequally_directed_lines(L,reverse_line(M)) )
=> point(intersection_point(L,M)) ) ).
fof(ax3_cons_objs,axiom,
! [L,A] :
( ( point(A)
& line(L) )
=> line(parallel_through_point(L,A)) ) ).
fof(ax4_cons_objs,axiom,
! [L] :
( line(L)
=> line(reverse_line(L)) ) ).
fof(ax5_cons_objs,axiom,
! [A,B] :
( distinct_points(A,B)
=> ( ~ apart_point_and_line(A,line_connecting(A,B))
& ~ apart_point_and_line(B,line_connecting(A,B)) ) ) ).
fof(ax6_cons_objs,axiom,
! [L,M] :
( ( unequally_directed_lines(L,M)
& unequally_directed_lines(L,reverse_line(M)) )
=> ( ~ apart_point_and_line(intersection_point(L,M),L)
& ~ apart_point_and_line(intersection_point(L,M),M) ) ) ).
fof(ax7_cons_objs,axiom,
! [A,L] : ~ apart_point_and_line(A,parallel_through_point(L,A)) ).
fof(ax8_cons_objs,axiom,
! [L] : ~ distinct_lines(L,reverse_line(L)) ).
fof(ax9_cons_objs,axiom,
! [A,B] :
( distinct_points(A,B)
=> equally_directed_lines(line_connecting(A,B),reverse_line(line_connecting(B,A))) ) ).
fof(ax10_cons_objs,axiom,
! [A,L] : equally_directed_lines(parallel_through_point(L,A),L) ).
fof(ax1_uniq_cons,axiom,
! [A,B,L,M] :
( ( distinct_points(A,B)
& distinct_lines(L,M) )
=> ( left_apart_point(A,L)
| left_apart_point(B,L)
| left_apart_point(A,M)
| left_apart_point(B,M)
| left_apart_point(A,reverse_line(L))
| left_apart_point(B,reverse_line(L))
| left_apart_point(A,reverse_line(M))
| left_apart_point(B,reverse_line(M)) ) ) ).
fof(ax2_uniq_cons,axiom,
! [A,B,L] :
( ( distinct_points(A,B)
& left_apart_point(A,L) )
=> ( left_apart_point(B,L)
| left_convergent_lines(line_connecting(A,B),L) ) ) ).
fof(ax1_subs,axiom,
! [A,B,L] :
( left_apart_point(A,L)
=> ( distinct_points(A,B)
| left_apart_point(B,L) ) ) ).
fof(ax2_subs,axiom,
! [A,L,M] :
( ( left_apart_point(A,L)
& unequally_directed_lines(L,M) )
=> ( distinct_lines(L,M)
| left_apart_point(A,reverse_line(M)) ) ) ).
fof(ax3_subs,axiom,
! [L,M,N] :
( left_convergent_lines(L,M)
=> ( unequally_directed_lines(M,N)
| left_convergent_lines(L,N) ) ) ).
%------------------------------------------------------------------------------