TPTP Axioms File: GEO004+2.ax
%--------------------------------------------------------------------------
% File : GEO004+2 : TPTP v9.0.0. Released v2.4.0.
% Domain : Geometry (Oriented curves)
% Axioms : Oriented curves
% Version : [EHK99] axioms.
% English :
% Refs : [KE99] Kulik & Eschenbach (1999), A Geometry of Oriented Curv
% : [EHK99] Eschenbach et al. (1999), Representing Simple Trajecto
% Source : [EHK99]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 10 ( 1 unt; 0 def)
% Number of atoms : 39 ( 5 equ)
% Maximal formula atoms : 7 ( 3 avg)
% Number of connectives : 32 ( 3 ~; 1 |; 13 &)
% ( 10 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 7 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 9 ( 8 usr; 0 prp; 1-4 aty)
% Number of functors : 1 ( 1 usr; 0 con; 1-1 aty)
% Number of variables : 36 ( 32 !; 4 ?)
% SPC :
% Comments : Requires GEO004+0.ax GEO004+1.ax
%--------------------------------------------------------------------------
fof(between_o_defn,axiom,
! [O,P,Q,R] :
( between_o(O,P,Q,R)
<=> ( ( ordered_by(O,P,Q)
& ordered_by(O,Q,R) )
| ( ordered_by(O,R,Q)
& ordered_by(O,Q,P) ) ) ) ).
fof(start_point_defn,axiom,
! [P,O] :
( start_point(P,O)
<=> ( incident_o(P,O)
& ! [Q] :
( ( P != Q
& incident_o(Q,O) )
=> ordered_by(O,P,Q) ) ) ) ).
fof(finish_point_defn,axiom,
! [P,O] :
( finish_point(P,O)
<=> ( incident_o(P,O)
& ! [Q] :
( ( P != Q
& incident_o(Q,O) )
=> ordered_by(O,Q,P) ) ) ) ).
fof(o1,axiom,
! [O,P,Q] :
( ordered_by(O,P,Q)
=> ( incident_o(P,O)
& incident_o(Q,O) ) ) ).
fof(o2,axiom,
! [O] :
? [C] :
( open(C)
& ! [P] :
( incident_o(P,O)
<=> incident_c(P,C) ) ) ).
fof(o3,axiom,
! [P,Q,R,O] :
( between_o(O,P,Q,R)
<=> ? [C] :
( ! [P] :
( incident_o(P,O)
<=> incident_c(P,C) )
& between_c(C,P,Q,R) ) ) ).
fof(o4,axiom,
! [O] :
? [P] : start_point(P,O) ).
fof(o5,axiom,
! [P,Q,C] :
( ( open(C)
& P != Q
& incident_c(P,C)
& incident_c(Q,C) )
=> ? [O] :
( ! [R] :
( incident_o(R,O)
<=> incident_c(R,C) )
& ordered_by(O,P,Q) ) ) ).
fof(o6,axiom,
! [O1,O2] :
( ! [P,Q] :
( ordered_by(O1,P,Q)
<=> ordered_by(O2,P,Q) )
=> O1 = O2 ) ).
fof(underlying_curve_defn,axiom,
! [C,O] :
( C = underlying_curve(O)
<=> ! [P] :
( incident_o(P,O)
<=> incident_c(P,C) ) ) ).
%--------------------------------------------------------------------------