TPTP Axioms File: GEO004+0.ax
%--------------------------------------------------------------------------
% File : GEO004+0 : TPTP v9.0.0. Released v2.4.0.
% Domain : Geometry (Oriented curves)
% Axioms : Simple curve axioms
% Version : [EHK99] axioms.
% English :
% Refs : [KE99] Kulik & Eschenbach (1999), A Geometry of Oriented Curv
% : [EHK99] Eschenbach et al. (1999), Representing Simple Trajecto
% Source : [EHK99]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 16 ( 1 unt; 0 def)
% Number of atoms : 67 ( 10 equ)
% Maximal formula atoms : 12 ( 4 avg)
% Number of connectives : 55 ( 4 ~; 9 |; 21 &)
% ( 9 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 7 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-3 aty)
% Number of functors : 1 ( 1 usr; 0 con; 2-2 aty)
% Number of variables : 53 ( 44 !; 9 ?)
% SPC :
% Comments :
%--------------------------------------------------------------------------
fof(part_of_defn,axiom,
! [C,C1] :
( part_of(C1,C)
<=> ! [P] :
( incident_c(P,C1)
=> incident_c(P,C) ) ) ).
fof(sum_defn,axiom,
! [C,C1,C2] :
( C = sum(C1,C2)
<=> ! [Q] :
( incident_c(Q,C)
<=> ( incident_c(Q,C1)
| incident_c(Q,C2) ) ) ) ).
fof(end_point_defn,axiom,
! [P,C] :
( end_point(P,C)
<=> ( incident_c(P,C)
& ! [C1,C2] :
( ( part_of(C1,C)
& part_of(C2,C)
& incident_c(P,C1)
& incident_c(P,C2) )
=> ( part_of(C1,C2)
| part_of(C2,C1) ) ) ) ) ).
fof(inner_point_defn,axiom,
! [P,C] :
( inner_point(P,C)
<=> ( incident_c(P,C)
& ~ end_point(P,C) ) ) ).
fof(meet_defn,axiom,
! [P,C,C1] :
( meet(P,C,C1)
<=> ( incident_c(P,C)
& incident_c(P,C1)
& ! [Q] :
( ( incident_c(Q,C)
& incident_c(Q,C1) )
=> ( end_point(Q,C)
& end_point(Q,C1) ) ) ) ) ).
fof(closed_defn,axiom,
! [C] :
( closed(C)
<=> ~ ? [P] : end_point(P,C) ) ).
fof(open_defn,axiom,
! [C] :
( open(C)
<=> ? [P] : end_point(P,C) ) ).
fof(c1,axiom,
! [C,C1] :
( ( part_of(C1,C)
& C1 != C )
=> open(C1) ) ).
fof(c2,axiom,
! [C,C1,C2,C3] :
( ( part_of(C1,C)
& part_of(C2,C)
& part_of(C3,C)
& ? [P] :
( end_point(P,C1)
& end_point(P,C2)
& end_point(P,C3) ) )
=> ( part_of(C2,C3)
| part_of(C3,C2)
| part_of(C1,C2)
| part_of(C2,C1)
| part_of(C1,C3)
| part_of(C3,C1) ) ) ).
fof(c3,axiom,
! [C] :
? [P] : inner_point(P,C) ).
fof(c4,axiom,
! [C,P] :
( inner_point(P,C)
=> ? [C1,C2] :
( meet(P,C1,C2)
& C = sum(C1,C2) ) ) ).
fof(c5,axiom,
! [C,P,Q,R] :
( ( end_point(P,C)
& end_point(Q,C)
& end_point(R,C) )
=> ( P = Q
| P = R
| Q = R ) ) ).
fof(c6,axiom,
! [C,P] :
( end_point(P,C)
=> ? [Q] :
( end_point(Q,C)
& P != Q ) ) ).
fof(c7,axiom,
! [C,C1,C2,P] :
( ( closed(C)
& meet(P,C1,C2)
& C = sum(C1,C2) )
=> ! [Q] :
( end_point(Q,C1)
=> meet(Q,C1,C2) ) ) ).
fof(c8,axiom,
! [C1,C2] :
( ? [P] : meet(P,C1,C2)
=> ? [C] : C = sum(C1,C2) ) ).
fof(c9,axiom,
! [C,C1] :
( ! [P] :
( incident_c(P,C)
<=> incident_c(P,C1) )
=> C = C1 ) ).
%--------------------------------------------------------------------------