TPTP Axioms File: GEO001-0.ax
%--------------------------------------------------------------------------
% File : GEO001-0 : TPTP v9.0.0. Bugfixed v2.5.0
% Domain : Geometry (Tarskian)
% Axioms : Tarski geometry axioms
% Version : [MOW76] axioms.
% English :
% Refs : [Tar59] Tarski (1959), What is Elementary Geometry?
% : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr
% Source : [ANL]
% Names :
% Status : Satisfiable
% Syntax : Number of clauses : 20 ( 6 unt; 6 nHn; 17 RR)
% Number of literals : 64 ( 8 equ; 38 neg)
% Maximal clause size : 8 ( 3 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-4 aty)
% Number of functors : 8 ( 8 usr; 3 con; 0-6 aty)
% Number of variables : 79 ( 3 sgn)
% SPC :
% Comments : These axioms are also used in [Wos88], p.206.
% : outer_pasch : Skolem function arising from Outer Pasch Axiom (A7)
% euclid1 : Skolem function arising from Euclid's Axiom (A8)
% euclid2 : Skolem function arising from Euclid's Axiom (A8)
% extend : Skolem function from Segment Construction (A10)
% cont : Skolem function from Weakened Elementary Continuity (A13')
% Bugfixes : v2.5.0 - Fixed clause continuity1.
%--------------------------------------------------------------------------
cnf(identity_for_betweeness,axiom,
( ~ between(X,Y,X)
| X = Y ) ).
cnf(transitivity_for_betweeness,axiom,
( ~ between(X,Y,V)
| ~ between(Y,Z,V)
| between(X,Y,Z) ) ).
cnf(connectivity_for_betweeness,axiom,
( ~ between(X,Y,Z)
| ~ between(X,Y,V)
| X = Y
| between(X,Z,V)
| between(X,V,Z) ) ).
cnf(reflexivity_for_equidistance,axiom,
equidistant(X,Y,Y,X) ).
cnf(identity_for_equidistance,axiom,
( ~ equidistant(X,Y,Z,Z)
| X = Y ) ).
cnf(transitivity_for_equidistance,axiom,
( ~ equidistant(X,Y,Z,V)
| ~ equidistant(X,Y,V2,W)
| equidistant(Z,V,V2,W) ) ).
cnf(outer_pasch1,axiom,
( ~ between(X,W,V)
| ~ between(Y,V,Z)
| between(X,outer_pasch(W,X,Y,Z,V),Y) ) ).
cnf(outer_pasch2,axiom,
( ~ between(X,W,V)
| ~ between(Y,V,Z)
| between(Z,W,outer_pasch(W,X,Y,Z,V)) ) ).
cnf(euclid1,axiom,
( ~ between(X,V,W)
| ~ between(Y,V,Z)
| X = V
| between(X,Z,euclid1(W,X,Y,Z,V)) ) ).
cnf(euclid2,axiom,
( ~ between(X,V,W)
| ~ between(Y,V,Z)
| X = V
| between(X,Y,euclid2(W,X,Y,Z,V)) ) ).
cnf(euclid3,axiom,
( ~ between(X,V,W)
| ~ between(Y,V,Z)
| X = V
| between(euclid1(W,X,Y,Z,V),W,euclid2(W,X,Y,Z,V)) ) ).
cnf(outer_five_segment,axiom,
( ~ equidistant(X,Y,X1,Y1)
| ~ equidistant(Y,Z,Y1,Z1)
| ~ equidistant(X,V,X1,V1)
| ~ equidistant(Y,V,Y1,V1)
| ~ between(X,Y,Z)
| ~ between(X1,Y1,Z1)
| X = Y
| equidistant(Z,V,Z1,V1) ) ).
cnf(segment_construction1,axiom,
between(X,Y,extension(X,Y,W,V)) ).
cnf(segment_construction2,axiom,
equidistant(Y,extension(X,Y,W,V),W,V) ).
cnf(lower_dimension1,axiom,
~ between(lower_dimension_point_1,lower_dimension_point_2,lower_dimension_point_3) ).
cnf(lower_dimension2,axiom,
~ between(lower_dimension_point_2,lower_dimension_point_3,lower_dimension_point_1) ).
cnf(lower_dimension3,axiom,
~ between(lower_dimension_point_3,lower_dimension_point_1,lower_dimension_point_2) ).
cnf(upper_dimension,axiom,
( ~ equidistant(X,W,X,V)
| ~ equidistant(Y,W,Y,V)
| ~ equidistant(Z,W,Z,V)
| between(X,Y,Z)
| between(Y,Z,X)
| between(Z,X,Y)
| W = V ) ).
cnf(continuity1,axiom,
( ~ equidistant(V,X,V,X1)
| ~ equidistant(V,Z,V,Z1)
| ~ between(V,X,Z)
| ~ between(X,Y,Z)
| equidistant(V,Y,V,continuous(X,Y,Z,X1,Z1,V)) ) ).
cnf(continuity2,axiom,
( ~ equidistant(V,X,V,X1)
| ~ equidistant(V,Z,V,Z1)
| ~ between(V,X,Z)
| ~ between(X,Y,Z)
| between(X1,continuous(X,Y,Z,X1,Z1,V),Z1) ) ).
%--------------------------------------------------------------------------