TPTP Axioms File: FLD002-0.ax
%--------------------------------------------------------------------------
% File : FLD002-0 : TPTP v9.0.0. Released .0.
% Domain : Field Theory (Ordered fields)
% Axioms : Ordered field axioms (axiom formulation re)
% Version : [Dra93] axioms : Especial.
% English :
% Refs : [Dra93] Draeger (1993), Anwendung des Theorembeweisers SETHEO
% Source : [Dra93]
% Names :
% Status : Satisfiable
% Syntax : Number of clauses : 26 ( 3 unt; 3 nHn; 26 RR)
% Number of literals : 77 ( 0 equ; 49 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 4 usr; 0 prp; 1-3 aty)
% Number of functors : 6 ( 6 usr; 2 con; 0-2 aty)
% Number of variables : 73 ( 0 sgn)
% SPC :
% Comments : The missing equality axioms can be derived.
% : Currently it is unknown if this axiomatization is complete.
% It is definitely tuned for SETHEO.
% Bugfixes : .0 - Added different_identities clause.
%--------------------------------------------------------------------------
cnf(associativity_addition_1,axiom,
( sum(X,V,W)
| ~ sum(X,Y,U)
| ~ sum(Y,Z,V)
| ~ sum(U,Z,W) ) ).
cnf(associativity_addition_2,axiom,
( sum(U,Z,W)
| ~ sum(X,Y,U)
| ~ sum(Y,Z,V)
| ~ sum(X,V,W) ) ).
cnf(existence_of_identity_addition,axiom,
( sum(additive_identity,X,X)
| ~ defined(X) ) ).
cnf(existence_of_inverse_addition,axiom,
( sum(additive_inverse(X),X,additive_identity)
| ~ defined(X) ) ).
cnf(commutativity_addition,axiom,
( sum(Y,X,Z)
| ~ sum(X,Y,Z) ) ).
cnf(associativity_multiplication_1,axiom,
( product(X,V,W)
| ~ product(X,Y,U)
| ~ product(Y,Z,V)
| ~ product(U,Z,W) ) ).
cnf(associativity_multiplication_2,axiom,
( product(U,Z,W)
| ~ product(X,Y,U)
| ~ product(Y,Z,V)
| ~ product(X,V,W) ) ).
cnf(existence_of_identity_multiplication,axiom,
( product(multiplicative_identity,X,X)
| ~ defined(X) ) ).
cnf(existence_of_inverse_multiplication,axiom,
( product(multiplicative_inverse(X),X,multiplicative_identity)
| sum(additive_identity,X,additive_identity)
| ~ defined(X) ) ).
cnf(commutativity_multiplication,axiom,
( product(Y,X,Z)
| ~ product(X,Y,Z) ) ).
cnf(distributivity_1,axiom,
( sum(C,D,B)
| ~ sum(X,Y,A)
| ~ product(A,Z,B)
| ~ product(X,Z,C)
| ~ product(Y,Z,D) ) ).
cnf(distributivity_2,axiom,
( product(A,Z,B)
| ~ sum(X,Y,A)
| ~ product(X,Z,C)
| ~ product(Y,Z,D)
| ~ sum(C,D,B) ) ).
cnf(well_definedness_of_addition,axiom,
( defined(add(X,Y))
| ~ defined(X)
| ~ defined(Y) ) ).
cnf(well_definedness_of_additive_identity,axiom,
defined(additive_identity) ).
cnf(well_definedness_of_additive_inverse,axiom,
( defined(additive_inverse(X))
| ~ defined(X) ) ).
cnf(well_definedness_of_multiplication,axiom,
( defined(multiply(X,Y))
| ~ defined(X)
| ~ defined(Y) ) ).
cnf(well_definedness_of_multiplicative_identity,axiom,
defined(multiplicative_identity) ).
cnf(well_definedness_of_multiplicative_inverse,axiom,
( defined(multiplicative_inverse(X))
| ~ defined(X)
| sum(additive_identity,X,additive_identity) ) ).
cnf(totality_of_addition,axiom,
( sum(X,Y,add(X,Y))
| ~ defined(X)
| ~ defined(Y) ) ).
cnf(totality_of_multiplication,axiom,
( product(X,Y,multiply(X,Y))
| ~ defined(X)
| ~ defined(Y) ) ).
cnf(antisymmetry_of_order_relation,axiom,
( sum(additive_identity,X,Y)
| ~ less_or_equal(X,Y)
| ~ less_or_equal(Y,X) ) ).
cnf(transitivity_of_order_relation,axiom,
( less_or_equal(X,Z)
| ~ less_or_equal(X,Y)
| ~ less_or_equal(Y,Z) ) ).
cnf(totality_of_order_relation,axiom,
( less_or_equal(X,Y)
| less_or_equal(Y,X)
| ~ defined(X)
| ~ defined(Y) ) ).
cnf(compatibility_of_order_relation_and_addition,axiom,
( less_or_equal(U,V)
| ~ less_or_equal(X,Y)
| ~ sum(X,Z,U)
| ~ sum(Y,Z,V) ) ).
cnf(compatibility_of_order_relation_and_multiplication,axiom,
( less_or_equal(additive_identity,Z)
| ~ less_or_equal(additive_identity,X)
| ~ less_or_equal(additive_identity,Y)
| ~ product(X,Y,Z) ) ).
cnf(different_identities,axiom,
~ sum(additive_identity,additive_identity,multiplicative_identity) ).
%--------------------------------------------------------------------------