TPTP Axioms File: FLD002-0.ax


%--------------------------------------------------------------------------
% File     : FLD002-0 : TPTP v9.0.0. Released .0.
% Domain   : Field Theory (Ordered fields)
% Axioms   : Ordered field axioms (axiom formulation re)
% Version  : [Dra93] axioms : Especial.
% English  :

% Refs     : [Dra93] Draeger (1993), Anwendung des Theorembeweisers SETHEO
% Source   : [Dra93]
% Names    :

% Status   : Satisfiable
% Syntax   : Number of clauses     :   26 (   3 unt;   3 nHn;  26 RR)
%            Number of literals    :   77 (   0 equ;  49 neg)
%            Maximal clause size   :    5 (   2 avg)
%            Maximal term depth    :    2 (   1 avg)
%            Number of predicates  :    4 (   4 usr;   0 prp; 1-3 aty)
%            Number of functors    :    6 (   6 usr;   2 con; 0-2 aty)
%            Number of variables   :   73 (   0 sgn)
% SPC      : 

% Comments : The missing equality axioms can be derived.
%          : Currently it is unknown if this axiomatization is complete.
%            It is definitely tuned for SETHEO.
% Bugfixes : .0 - Added different_identities clause.
%--------------------------------------------------------------------------
cnf(associativity_addition_1,axiom,
    ( sum(X,V,W)
    | ~ sum(X,Y,U)
    | ~ sum(Y,Z,V)
    | ~ sum(U,Z,W) ) ).

cnf(associativity_addition_2,axiom,
    ( sum(U,Z,W)
    | ~ sum(X,Y,U)
    | ~ sum(Y,Z,V)
    | ~ sum(X,V,W) ) ).

cnf(existence_of_identity_addition,axiom,
    ( sum(additive_identity,X,X)
    | ~ defined(X) ) ).

cnf(existence_of_inverse_addition,axiom,
    ( sum(additive_inverse(X),X,additive_identity)
    | ~ defined(X) ) ).

cnf(commutativity_addition,axiom,
    ( sum(Y,X,Z)
    | ~ sum(X,Y,Z) ) ).

cnf(associativity_multiplication_1,axiom,
    ( product(X,V,W)
    | ~ product(X,Y,U)
    | ~ product(Y,Z,V)
    | ~ product(U,Z,W) ) ).

cnf(associativity_multiplication_2,axiom,
    ( product(U,Z,W)
    | ~ product(X,Y,U)
    | ~ product(Y,Z,V)
    | ~ product(X,V,W) ) ).

cnf(existence_of_identity_multiplication,axiom,
    ( product(multiplicative_identity,X,X)
    | ~ defined(X) ) ).

cnf(existence_of_inverse_multiplication,axiom,
    ( product(multiplicative_inverse(X),X,multiplicative_identity)
    | sum(additive_identity,X,additive_identity)
    | ~ defined(X) ) ).

cnf(commutativity_multiplication,axiom,
    ( product(Y,X,Z)
    | ~ product(X,Y,Z) ) ).

cnf(distributivity_1,axiom,
    ( sum(C,D,B)
    | ~ sum(X,Y,A)
    | ~ product(A,Z,B)
    | ~ product(X,Z,C)
    | ~ product(Y,Z,D) ) ).

cnf(distributivity_2,axiom,
    ( product(A,Z,B)
    | ~ sum(X,Y,A)
    | ~ product(X,Z,C)
    | ~ product(Y,Z,D)
    | ~ sum(C,D,B) ) ).

cnf(well_definedness_of_addition,axiom,
    ( defined(add(X,Y))
    | ~ defined(X)
    | ~ defined(Y) ) ).

cnf(well_definedness_of_additive_identity,axiom,
    defined(additive_identity) ).

cnf(well_definedness_of_additive_inverse,axiom,
    ( defined(additive_inverse(X))
    | ~ defined(X) ) ).

cnf(well_definedness_of_multiplication,axiom,
    ( defined(multiply(X,Y))
    | ~ defined(X)
    | ~ defined(Y) ) ).

cnf(well_definedness_of_multiplicative_identity,axiom,
    defined(multiplicative_identity) ).

cnf(well_definedness_of_multiplicative_inverse,axiom,
    ( defined(multiplicative_inverse(X))
    | ~ defined(X)
    | sum(additive_identity,X,additive_identity) ) ).

cnf(totality_of_addition,axiom,
    ( sum(X,Y,add(X,Y))
    | ~ defined(X)
    | ~ defined(Y) ) ).

cnf(totality_of_multiplication,axiom,
    ( product(X,Y,multiply(X,Y))
    | ~ defined(X)
    | ~ defined(Y) ) ).

cnf(antisymmetry_of_order_relation,axiom,
    ( sum(additive_identity,X,Y)
    | ~ less_or_equal(X,Y)
    | ~ less_or_equal(Y,X) ) ).

cnf(transitivity_of_order_relation,axiom,
    ( less_or_equal(X,Z)
    | ~ less_or_equal(X,Y)
    | ~ less_or_equal(Y,Z) ) ).

cnf(totality_of_order_relation,axiom,
    ( less_or_equal(X,Y)
    | less_or_equal(Y,X)
    | ~ defined(X)
    | ~ defined(Y) ) ).

cnf(compatibility_of_order_relation_and_addition,axiom,
    ( less_or_equal(U,V)
    | ~ less_or_equal(X,Y)
    | ~ sum(X,Z,U)
    | ~ sum(Y,Z,V) ) ).

cnf(compatibility_of_order_relation_and_multiplication,axiom,
    ( less_or_equal(additive_identity,Z)
    | ~ less_or_equal(additive_identity,X)
    | ~ less_or_equal(additive_identity,Y)
    | ~ product(X,Y,Z) ) ).

cnf(different_identities,axiom,
    ~ sum(additive_identity,additive_identity,multiplicative_identity) ).

%--------------------------------------------------------------------------