TPTP Axioms File: FLD001-0.ax
%--------------------------------------------------------------------------
% File : FLD001-0 : TPTP v9.0.0. Released .0.
% Domain : Field Theory (Ordered fields)
% Axioms : Ordered field axioms (axiom formulation glxx)
% Version : [Dra93] axioms : Especial.
% English :
% Refs : [Dra93] Draeger (1993), Anwendung des Theorembeweisers SETHEO
% Source : [Dra93]
% Names :
% Status : Satisfiable
% Syntax : Number of clauses : 27 ( 3 unt; 3 nHn; 27 RR)
% Number of literals : 73 ( 0 equ; 44 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 6 ( 6 usr; 2 con; 0-2 aty)
% Number of variables : 50 ( 0 sgn)
% SPC :
% Comments : The missing equality axioms can be derived.
% : Currently it is unknown if this axiomatization is complete.
% It is definitely tuned for SETHEO.
% Bugfixes : .0 - Added different_identities clause.
%--------------------------------------------------------------------------
cnf(associativity_addition,axiom,
( equalish(add(X,add(Y,Z)),add(add(X,Y),Z))
| ~ defined(X)
| ~ defined(Y)
| ~ defined(Z) ) ).
cnf(existence_of_identity_addition,axiom,
( equalish(add(additive_identity,X),X)
| ~ defined(X) ) ).
cnf(existence_of_inverse_addition,axiom,
( equalish(add(X,additive_inverse(X)),additive_identity)
| ~ defined(X) ) ).
cnf(commutativity_addition,axiom,
( equalish(add(X,Y),add(Y,X))
| ~ defined(X)
| ~ defined(Y) ) ).
cnf(associativity_multiplication,axiom,
( equalish(multiply(X,multiply(Y,Z)),multiply(multiply(X,Y),Z))
| ~ defined(X)
| ~ defined(Y)
| ~ defined(Z) ) ).
cnf(existence_of_identity_multiplication,axiom,
( equalish(multiply(multiplicative_identity,X),X)
| ~ defined(X) ) ).
cnf(existence_of_inverse_multiplication,axiom,
( equalish(multiply(X,multiplicative_inverse(X)),multiplicative_identity)
| ~ defined(X)
| equalish(X,additive_identity) ) ).
cnf(commutativity_multiplication,axiom,
( equalish(multiply(X,Y),multiply(Y,X))
| ~ defined(X)
| ~ defined(Y) ) ).
cnf(distributivity,axiom,
( equalish(add(multiply(X,Z),multiply(Y,Z)),multiply(add(X,Y),Z))
| ~ defined(X)
| ~ defined(Y)
| ~ defined(Z) ) ).
cnf(well_definedness_of_addition,axiom,
( defined(add(X,Y))
| ~ defined(X)
| ~ defined(Y) ) ).
cnf(well_definedness_of_additive_identity,axiom,
defined(additive_identity) ).
cnf(well_definedness_of_additive_inverse,axiom,
( defined(additive_inverse(X))
| ~ defined(X) ) ).
cnf(well_definedness_of_multiplication,axiom,
( defined(multiply(X,Y))
| ~ defined(X)
| ~ defined(Y) ) ).
cnf(well_definedness_of_multiplicative_identity,axiom,
defined(multiplicative_identity) ).
cnf(well_definedness_of_multiplicative_inverse,axiom,
( defined(multiplicative_inverse(X))
| ~ defined(X)
| equalish(X,additive_identity) ) ).
cnf(antisymmetry_of_order_relation,axiom,
( equalish(X,Y)
| ~ less_or_equal(X,Y)
| ~ less_or_equal(Y,X) ) ).
cnf(transitivity_of_order_relation,axiom,
( less_or_equal(X,Z)
| ~ less_or_equal(X,Y)
| ~ less_or_equal(Y,Z) ) ).
cnf(totality_of_order_relation,axiom,
( less_or_equal(X,Y)
| less_or_equal(Y,X)
| ~ defined(X)
| ~ defined(Y) ) ).
cnf(compatibility_of_order_relation_and_addition,axiom,
( less_or_equal(add(X,Z),add(Y,Z))
| ~ defined(Z)
| ~ less_or_equal(X,Y) ) ).
cnf(compatibility_of_order_relation_and_multiplication,axiom,
( less_or_equal(additive_identity,multiply(Y,Z))
| ~ less_or_equal(additive_identity,Y)
| ~ less_or_equal(additive_identity,Z) ) ).
cnf(reflexivity_of_equality,axiom,
( equalish(X,X)
| ~ defined(X) ) ).
cnf(symmetry_of_equality,axiom,
( equalish(X,Y)
| ~ equalish(Y,X) ) ).
cnf(transitivity_of_equality,axiom,
( equalish(X,Z)
| ~ equalish(X,Y)
| ~ equalish(Y,Z) ) ).
cnf(compatibility_of_equality_and_addition,axiom,
( equalish(add(X,Z),add(Y,Z))
| ~ defined(Z)
| ~ equalish(X,Y) ) ).
cnf(compatibility_of_equality_and_multiplication,axiom,
( equalish(multiply(X,Z),multiply(Y,Z))
| ~ defined(Z)
| ~ equalish(X,Y) ) ).
cnf(compatibility_of_equality_and_order_relation,axiom,
( less_or_equal(Y,Z)
| ~ less_or_equal(X,Z)
| ~ equalish(X,Y) ) ).
cnf(different_identities,axiom,
~ equalish(additive_identity,multiplicative_identity) ).
%--------------------------------------------------------------------------