TPTP Axioms File: COL001-0.ax
%------------------------------------------------------------------------------
% File : COL001-0 : TPTP v9.0.0. Bugfixed v1.2.0.
% Domain : Combinatory Logic
% Axioms : Type-respecting combinators
% Version : [Jec95] (equality) axioms.
% English :
% Refs : [Jec95] Jech (1995), Otter Experiments in a System of Combinat
% Source : [Jec95]
% Names :
% Status : Satisfiable
% Syntax : Number of clauses : 10 ( 8 unt; 1 nHn; 2 RR)
% Number of literals : 12 ( 12 equ; 2 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 18 ( 3 sgn)
% SPC :
% Comments :
%------------------------------------------------------------------------------
cnf(k_definition,axiom,
apply(k(X),Y) = X ).
cnf(projection1,axiom,
apply(projection1,pair(X,Y)) = X ).
cnf(projection2,axiom,
apply(projection2,pair(X,Y)) = Y ).
cnf(pairing,axiom,
pair(apply(projection1,X),apply(projection2,X)) = X ).
cnf(pairwise_application,axiom,
apply(pair(X,Y),Z) = pair(apply(X,Z),apply(Y,Z)) ).
cnf(abstraction,axiom,
apply(apply(apply(abstraction,X),Y),Z) = apply(apply(X,k(Z)),apply(Y,Z)) ).
cnf(equality,axiom,
apply(eq,pair(X,X)) = projection1 ).
cnf(extensionality1,axiom,
( X = Y
| apply(eq,pair(X,Y)) = projection2 ) ).
cnf(extensionality2,axiom,
( X = Y
| apply(X,n(X,Y)) != apply(Y,n(X,Y)) ) ).
cnf(different_projections,axiom,
projection1 != projection2 ).
%------------------------------------------------------------------------------