TPTP Axioms File: BOO002-0.ax
%--------------------------------------------------------------------------
% File : BOO002-0 : TPTP v9.0.0. Released v1.0.0.
% Domain : Boolean Algebra
% Axioms : Boolean algebra axioms
% Version : [MOW76] axioms.
% English :
% Refs : [Whi61] Whitesitt (1961), Boolean Algebra and Its Applications
% : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [MOW76]
% Names :
% Status : Satisfiable
% Syntax : Number of clauses : 22 ( 10 unt; 0 nHn; 12 RR)
% Number of literals : 60 ( 2 equ; 38 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 82 ( 0 sgn)
% SPC :
% Comments :
%--------------------------------------------------------------------------
cnf(closure_of_addition,axiom,
sum(X,Y,add(X,Y)) ).
cnf(closure_of_multiplication,axiom,
product(X,Y,multiply(X,Y)) ).
cnf(commutativity_of_addition,axiom,
( ~ sum(X,Y,Z)
| sum(Y,X,Z) ) ).
cnf(commutativity_of_multiplication,axiom,
( ~ product(X,Y,Z)
| product(Y,X,Z) ) ).
cnf(additive_identity1,axiom,
sum(additive_identity,X,X) ).
cnf(additive_identity2,axiom,
sum(X,additive_identity,X) ).
cnf(multiplicative_identity1,axiom,
product(multiplicative_identity,X,X) ).
cnf(multiplicative_identity2,axiom,
product(X,multiplicative_identity,X) ).
cnf(distributivity1,axiom,
( ~ product(X,Y,V1)
| ~ product(X,Z,V2)
| ~ sum(Y,Z,V3)
| ~ product(X,V3,V4)
| sum(V1,V2,V4) ) ).
cnf(distributivity2,axiom,
( ~ product(X,Y,V1)
| ~ product(X,Z,V2)
| ~ sum(Y,Z,V3)
| ~ sum(V1,V2,V4)
| product(X,V3,V4) ) ).
cnf(distributivity3,axiom,
( ~ product(Y,X,V1)
| ~ product(Z,X,V2)
| ~ sum(Y,Z,V3)
| ~ product(V3,X,V4)
| sum(V1,V2,V4) ) ).
cnf(distributivity4,axiom,
( ~ product(Y,X,V1)
| ~ product(Z,X,V2)
| ~ sum(Y,Z,V3)
| ~ sum(V1,V2,V4)
| product(V3,X,V4) ) ).
cnf(distributivity5,axiom,
( ~ sum(X,Y,V1)
| ~ sum(X,Z,V2)
| ~ product(Y,Z,V3)
| ~ sum(X,V3,V4)
| product(V1,V2,V4) ) ).
cnf(distributivity6,axiom,
( ~ sum(X,Y,V1)
| ~ sum(X,Z,V2)
| ~ product(Y,Z,V3)
| ~ product(V1,V2,V4)
| sum(X,V3,V4) ) ).
cnf(distributivity7,axiom,
( ~ sum(Y,X,V1)
| ~ sum(Z,X,V2)
| ~ product(Y,Z,V3)
| ~ sum(V3,X,V4)
| product(V1,V2,V4) ) ).
cnf(distributivity8,axiom,
( ~ sum(Y,X,V1)
| ~ sum(Z,X,V2)
| ~ product(Y,Z,V3)
| ~ product(V1,V2,V4)
| sum(V3,X,V4) ) ).
cnf(additive_inverse1,axiom,
sum(inverse(X),X,multiplicative_identity) ).
cnf(additive_inverse2,axiom,
sum(X,inverse(X),multiplicative_identity) ).
cnf(multiplicative_inverse1,axiom,
product(inverse(X),X,additive_identity) ).
cnf(multiplicative_inverse2,axiom,
product(X,inverse(X),additive_identity) ).
%-----Well definedness of the operations
cnf(addition_is_well_defined,axiom,
( ~ sum(X,Y,U)
| ~ sum(X,Y,V)
| U = V ) ).
cnf(multiplication_is_well_defined,axiom,
( ~ product(X,Y,U)
| ~ product(X,Y,V)
| U = V ) ).
%--------------------------------------------------------------------------