The TPTP Language

Table of Contents


Annotated Formulae

TPTP problems and TSTP solutions are built from annotated formulae of the form language(name,role,formula,source,[useful_info]).. The languages currently supported are thf - formulae in typed higher-order form, tff - formulae in typed first-order form (including extended form), fof - formulae in first order form, and cnf - formulae in clause normal form. The name identifies the formula within the problem. The role gives the user semantics of the formula, one of axiom, hypothesis, definition, assumption, lemma, theorem, corollary, conjecture, negated_conjecture, plain, type, interpretation, logic, and unknown.

The syntax for atoms is that of Prolog: variables start with upper case letters, atoms and terms are written in prefix notation, uninterpreted predicates and functors either start with lower case and contain alphanumerics and underscore, or are in 'single quotes'. The language also supports interpreted predicates and functors. These come in two varieties: defined predicates and functors, whose interpretation is specified by the TPTP language, and system predicates and functors, whose interpretation is ATP system specific. Interpreted predicates and functors are syntactically distinct from uninterpreted ones - they are = and !=, or start with a $, a ", or a digit. Non-variable symbols can be given a type globally, in the formula with role type. The defined types are $o - the Boolean type, $i - the type of individuals, $real - the type of reals, $rat - the type of rational, and $int - the type of integers. New types are introduced in formulae with the type role, based on $tType - the type of all types. Full details of the THF and TFF type systems are provided in [SS+12,BP13,SB10,KSR16], with the last providing an overview of the first three.

The defined predicates recognized so far are

The defined functors recognized so far are

System predicates and functors are used for interpreted predicates and functors that are available in particular ATP tools. System predicates and functors start with $$. The names are not controlled by the TPTP language, so they must be used with caution.

The connectives used to build non-atomic formulae are written using intuitive notations. The universal quantifier is !, the existential quantifier is ?, and the lambda binder is ^. Quantified formulae are written in the form Quantifier [Variables] :  Formula. In the THF, TFF, and FOF languages, every variable in a Formula must be bound by a preceding quantification with adequate scope. Typed Variables are given their type by a :type suffix. The binary connectives are infix | for disjunction, infix & for conjunction, infix <=> for equivalence, infix => for implication, infix <= for reverse implication, infix <~> for non-equivalence (XOR), infix ~| for negated disjunction (NOR), infix ~& for negated conjunction (NAND), infix @ for application. The only unary connective is prefix ~ for negation. Negation has higher precedence than quantification, which in turn has higher precedence than the binary connectives. No precedence is specified between the binary connectives; brackets are used to ensure the correct association. The binary connectives are left associative.

The THF and TFF languages have conditional and let expressions.

The useful_info field of an annotated formula is optional, and if it is not used then the source field becomes optional. The source field is used to record where the annotated formula came from, and is most commonly a file record or an inference record. A file record stores the name of the file from which the annotated formula was read, and optionally the name of the annotated formula as it occurs in that file - this might be different from the name of the annotated formula itself, e.g., if an ATP systems reads an annotated formula, renames it, and then prints it out. An inference record stores information about an inferred formula. The useful_info field of an annotated formula is a list of arbitrary useful information formatted as Prolog terms, as required for user applications.

An example of a THF formula section, extracted from the problem file LCL633^1.p, is shown below. An example of a TFF formula section, extracted from the problem file DAT013=1.p, is shown below that. Example THF formulae. An example of a FOF formula section, extracted from the problem file GRP194+1.p, is shown below that. An example of a clause section, extracted from the problem file GRP039-7.p, is shown below that.

%------------------------------------------------------------------------------
%----Signature
thf(a,type,(
    a: $tType )).

thf(p,type,(
    p: ( a > $i > $o ) > $i > $o )).

thf(g,type,(
    g: a > $i > $o )).

thf(e,type,(
    e: ( a > $i > $o ) > a > $i > $o )).

thf(r,type,(
    r: $i > $i > $o )).

%----Axioms
thf(positiveness,axiom,(
    ! [X: a > $i > $o] :
      ( mvalid
      @ ( mimpl @ ( mnot @ ( p @ X ) )
        @ ( p
          @ ^ [Z: a] :
              ( mnot @ ( X @ Z ) ) ) ) ) )).

thf(g,definition,
    ( g
    = ( ^ [Z: a,W: $i] :
        ! [X: a > $i > $o] :
          ( mimpl @ ( p @ X ) @ ( X @ Z ) @ W ) ) )).

thf(e,definition,
    ( e
    = ( ^ [X: a > $i > $o,Z: a,P: $i] :
        ! [Y: a > $i > $o] :
          ( mimpl @ ( Y @ Z )
          @ ( mbox @ r
            @ ^ [Q: $i] :
              ! [W: a] :
                ( mimpl @ ( X @ W ) @ ( Y @ W ) @ Q ) )
          @ P ) ) )).

%----Conjecture
thf(thm,conjecture,
    ( mvalid
    @ ^ [W: $i] :
      ! [Z: a] :
        ( mimpl @ ( g @ Z ) @ ( e @ g @ Z ) @ W ) )).
%------------------------------------------------------------------------------
Example of a THF problem file formulae section (LCL633^1.p).
%------------------------------------------------------------------------------
tff(list_type,type,(
    list: $tType )).

tff(nil_type,type,(
    nil: list )).

tff(mycons_type,type,(
    mycons: ( $int * list ) > list )).

tff(sorted_type,type,(
    fib_sorted: list > $o )).

tff(empty_fib_sorted,axiom,(
    fib_sorted(nil) )).

tff(single_is_fib_sorted,axiom,(
    ! [X: $int] : fib_sorted(mycons(X,nil)) )).

tff(double_is_fib_sorted_if_ordered,axiom,(
    ! [X: $int,Y: $int] :
      ( $less(X,Y)
     => fib_sorted(mycons(X,mycons(Y,nil))) ) )).

tff(recursive_fib_sort,axiom,(
    ! [X: $int,Y: $int,Z: $int,R: list] :
      ( ( $less(X,Y)
        & $greatereq(Z,$sum(X,Y))
        & fib_sorted(mycons(Y,mycons(Z,R))) )
     => fib_sorted(mycons(X,mycons(Y,mycons(Z,R)))) ) )).

tff(check_list,conjecture,(
    fib_sorted(mycons(1,mycons(2,mycons(4,mycons(7,mycons(100,nil)))))) )).
%------------------------------------------------------------------------------
Example of a TFF problem file formulae section (DAT002=1.p).
%--------------------------------------------------------------------------
%----Definition of a homomorphism
fof(homomorphism1,axiom,
    ( ! [X] :
        ( group_member(X,f)
       => group_member(phi(X),h) ) )).

fof(homomorphism2,axiom,
    ( ! [X,Y] :
        ( ( group_member(X,f)
          & group_member(Y,f) )
       => multiply(h,phi(X),phi(Y)) = phi(multiply(f,X,Y)) ) )).

fof(surjective,axiom,
    ( ! [X] :
        ( group_member(X,h)
       => ? [Y] :
            ( group_member(Y,f)
            & phi(Y) = X ) ) )).

%----Definition of left zero
fof(left_zero,axiom,
    ( ! [G,X] :
        ( left_zero(G,X)
      <=> ( group_member(X,G)
          & ! [Y] :
              ( group_member(Y,G)
             => multiply(G,X,Y) = X ) ) ) )).

%----The conjecture
fof(left_zero_for_f,hypothesis,
    ( left_zero(f,f_left_zero) )).

fof(prove_left_zero_h,conjecture,
    ( left_zero(h,phi(f_left_zero)) )).
%--------------------------------------------------------------------------
Example of a FOF problem file formulae section (GRP194+1.p).

%--------------------------------------------------------------------------
%----Redundant two axioms
cnf(right_identity,axiom,
    ( multiply(X,identity) = X )).

cnf(right_inverse,axiom,
    ( multiply(X,inverse(X)) = identity )).

... some clauses omitted here for brevity

cnf(property_of_O2,axiom,
    ( subgroup_member(X)
    | subgroup_member(Y)
    | multiply(X,element_in_O2(X,Y)) = Y )).

%----Denial of theorem
cnf(b_in_O2,negated_conjecture,
    ( subgroup_member(b) )).

cnf(b_times_a_inverse_is_c,negated_conjecture,
    ( multiply(b,inverse(a)) = c )).

cnf(a_times_c_is_d,negated_conjecture,
    ( multiply(a,c) = d )).

cnf(prove_d_in_O2,negated_conjecture,
    ( ~ subgroup_member(d) )).
%--------------------------------------------------------------------------
Example of a CNF problem file clause section (GRP039-7.p).

The Arithmetic System

Arithmetic must be done in the context of the THF or TFF types logics, which support the predefined atomic numeric types $int, $rat, and $real. Using THF or TFF enforces semantics that separate $int from $rat from $real from $i from $o. The numbers are unbounded, and the reals of infinite precision (rather than some specific implementation such as 32 bit 2's complement integer, or IEEE floating point). Systems that implement limited arithmetic must halt in an
SZS error state if they hit overflow.

The following interpreted predicates and interpreted functions are defined. Each symbol is ad-hoc polymorphic over the numeric types exception - $quotient is not defined for $int). All arguments must have the same numeric type. All the functions, except for $quotient of two $ints, and the coercion functions $to_int and $to_rat, have the same range type as their arguments. For example, $sum can be used with the type signatures ($int * $int) > $int, ($rat * $rat) > $rat, and ($real * $real) > $real. The $quotient of two $ints is a $rat. The coercion function $to_int always has a $int result, and the coercion function $to_rat always has a $rat result. All the predicates have a $o result. For example, $less can be used with the type signatures ($int * $int) > $o, ($rat * $rat) > $o, and ($real * $real) > $o.

Symbol Operation Comments, examples                                        -
$int The type of integers 123, -123
<integer>            ::- (<signed_integer>|<unsigned_integer>)
<signed_integer>     ::- <sign><unsigned_integer>
<unsigned_integer>   ::- <decimal>
<decimal>            ::- (<zero_numeric>|<positive_decimal>)
<positive_decimal>   ::- <non_zero_numeric><numeric>*
<sign>               ::: [+-]
<zero_numeric>       ::: [0]
<non_zero_numeric>   ::: [1-9]
<numeric>            ::: [0-9]
$rat The type of rationals 123/456, -123/456, +123/456
<rational>           ::- (<signed_rational>|<unsigned_rational>)
<signed_rational>    ::- <sign><unsigned_rational>
<unsigned_rational>  ::- <decimal><slash><positive_decimal>
<slash>              ::: [/]
$real The type of reals 123.456, -123.456,
123.456E789, 123.456e789, -123.456E789,
123.456E-789, -123.456E-789
<real>               ::- (<signed_real>|<unsigned_real>)
<signed_real>        ::- <sign><unsigned_real>
<unsigned_real>      ::- (<decimal_fraction>|<decimal_exponent>)
<decimal_exponent>   ::- (<decimal>|<decimal_fraction>)<exponent><decimal>
<decimal_fraction>   ::- <decimal><dot_decimal>
<dot_decimal>        ::- <dot><numeric><numeric>*
<dot>                ::: [.]
<exponent>           ::: [Ee]
= (infix) Comparison of two numbers. The numbers must be the same atomic type (see the type system).
$less/2 Less-than comparison of two numbers. $less, $lesseq, $greater, and $greatereq are related by
  ! [X,Y] : ( $lesseq(X,Y) <=> ( $less(X,Y) | X = Y ) )
  ! [X,Y] : ( $greater(X,Y) <=> $less(Y,X) )
  ! [X,Y] : ( $greatereq(X,Y) <=> $lesseq(Y,X) )
i.e, only $less and equality need to be implemented to get all four relational operators.
$lesseq/2 Less-than-or-equal-to comparison of two numbers.
$greater/2 Greater-than comparison of two numbers.
$greatereq/2 Greater-than-or-equal-to comparison of two numbers.
$uminus/1 Unary minus of a number. $uminus, $sum, and $difference are related by
  ! [X,Y] : $difference(X,Y) = $sum(X,$uminus(Y))
i.e, only $uminus and $sum need to be implemented to get all three additive operators.
$sum/2 Sum of two numbers.
$difference/2 Difference between two numbers.
$product/2 Product of two numbers.
$quotient/2 Exact quotient of two numbers of the same type. For non-zero divisors, the result can be computed. For zero divisors the result is not specified. In practice, if an ATP system does not "know" that the divisor is non-zero, it should simply not evaluate the $quotient. Users should always guard their use of $quotient using inequality, e.g.,
  ! [X: $real] : ( X != 0.0 => p($quotient(5.0,X)) )
For $rat or $real operands the result is the same type. For $int operands the result is $rat; the result might be simplied.
$quotient_e/2, $quotient_t/2, $quotient_f/2 Integral quotient of two numbers. The three variants use different rounding to an integral result:
  • $quotient_e(N,D) - the Euclidean quotient, which has a non-negative remainder. If D is positive then $quotient_e(N,D) is the floor (in the type of N and D) of the real division N/D, and if D is negative then $quotient_e(N,D) is the ceiling of N/D.
  • $quotient_t(N,D) - the truncation of the real division N/D.
  • $quotient_f(N,D) - the floor of the real division N/D.
For zero divisors the result is not specified.
$remainder_e/2, $remainder_t/2, $remainder_f/2 Remainder after integral division of two numbers. For τ ∈ {$int,$rat, $real}, ρ ∈ {e, t,f}, $quotient_ρ and $remainder_ρ are related by
  ! [N:τ,D:τ] : $sum($product($quotient_ρ(N,D),D),$remainder_ρ(N,D)) = N
For zero divisors the result is not specified.
$floor/1 Floor of a number. The largest integral value (in the type of the argument) not greater than the argument.
$ceiling/1 Ceiling of a number. The smallest integral value (in the type of the argument) not less than the argument.
$truncate/1 Truncation of a number. The nearest integral value (in the type of the argument) with magnitude not greater than the absolute value of the argument.
$round/1 Rounding of a number. The nearest integral value (in the type of the argument) to the argument. If the argument is halfway between two integral values, the nearest even integral value to the argument.
$is_int/1 Test for coincidence with an $int value.
$is_rat/1 Test for coincidence with a $rat value.
$to_int/1 Coercion of a number to $int. The largest $int not greater than the argument. If applied to an argument of type $int this is the identity function.
$to_rat/1 Coercion of a number to $rat. This function is not fully specified. If applied to a $int the result is the argument over 1. If applied to a $rat this is the identity function. If applied to a $real that is (known to be) rational the result is the $rat value. For other reals the result is not specified. In practice, if an ATP system does not "know" that the argument is rational, it should simply not evaluate the $to_rat. Users should always guard their use of $to_rat using $is_rat, e.g.,
  ! [X: $real] : ( $is_rat(X) => p($to_rat(X)) )
$to_real/1 Coercion of a number to $real.

The extent to which ATP systems are able to work with the arithmetic predicates and functions can vary, from a simple ability to evaluate ground terms, e.g., $sum(2,3) can be evaluated to 5, through an ability to instantiate variables in equations involving such functions, e.g., $product(2,$uminus(X)) = $uminus($sum(X,2)) can instantiate X to 2, to extensive algebraic manipulation capability. The syntax does not axiomatize arithmetic theory, but may be used to write axioms of the theory.


The Non-classical Logics

The TPTP recognizes several normal modal logics, and one temporal logic. Each logic has a define name: Connectives
The non-classical connectives of NTF have the form {$name}. For the logics recognized by the TPTP the connectives are: (System names may also be used for user-defined connectives, e.g., {$$canadian_conditional}, thus allowing use of the TPTP syntax when experimenting with logics that have not yet been formalized in the TPTP.) A connective can be parameterized to reflect more complex non-classical connectives. The form is {$name(param1,param2,param2)}. If the connective is indexed the index is given as the first parameter prefixed with a #, e.g., {$knows(#manuel)} @ (nothing)}, so that the connective is {$knows(#manuel)} (and not the connective {$knows} applied to the index #manuel). All other parameters are key-value assignments, e.g., to list the agents of common knowledge the form might be {$common($agents:=[alice,bob,claire])}.

In NXF the non-classical connectives are applied in a mixed higher-order-applied/first-order-functional style, with the connectives applied using @ to a ()ed list of arguments. In NHF the non-classical connectives are applied using @ in usual higher-order style with curried function applications. There are also short form unary connectives for unparameterised {$box} and {$dia}, applied directly like negation: [.] and <.>, e.g., {$box} @ (p) can be written [.] p. Short forms and long forms can be used together, e.g., it’s OK to use {$necessary} and [.] in the same problem or formula.

Full specification of the connectives and their use in formulae is in the BNF starting at <nxf_atom> and <thf_defined_atomic>.

Semantics Specification
An annotated formula with the role logic is used to specify the semantics of formulae. The semantic specification typically comes first in a file. A semantic specification consists of the defined name of the logic followed by == and a list of properties value assignments. Each specification is the property name, followed by == and either a value or a tuple of specification details. If the first element of a list of details is a value, that is the default value for all cases that are not specified in the rest of the list. Each detail after the optional default value is the name of a relevant part of the vocabulary of the problem, followed by == and a value for that named part. The BNF grammar is
here. The grammar is not very restrictive on purpose, to enable working with other logics as well. It is possible to create a lot of nonsense specifications, and to say the same thing in different meaningful ways. A tool to check the sanity of a specification is available.

A semantic specification changes the meaning of things such as the boolean type $o, universal quantification with !, etc - their existing meaning in classical logic should not be confused with the meaning in the declared logic.

For plain $modal and all the *_modal logics the properties that may be specified are $domains, $designation, $terms, and $modalities.

For $temporal_instant the properties are the $domains, $designation, and $terms of the modal logic, $modalities with different possible values, and another property $time.

The formulae of a problem can be either local (true in the current world) or global (true in all worlds). By default, formulae with the roles hypothesis and conjecture are local, and all others are global. These defaults can be overridden by adding a subrole, e.g., axiom-$local, conjecture-$global.


The TPTP Language BNF

TPTP Syntax %----v9.0.0.0 (TPTP version.internal development number)
%----v9.0.0.1 Added <tff_quantifier>. Added <hash> (for epsilon terms) to <thf_quantifier> and
%----         <tff_quantifier>. Changed <tff_quantified_formula> to use <tff_quantifier>.
%----v9.0.0.2 Removed axiom_of_choice as an <intro_type>
%----         Renamed <inference_parents> to <parents>
%----         <inference_record>     :== inference(<inference_rule>,<useful_info>,<parents>)
%----         Aligned introduced and creator with inferred
%----         <internal_source>      :== introduced(<intro_type>,<useful_info>,<parents>)
%----         <creator_source>       :== creator(<creator_name>,<useful_info>,<parents>)
%----v9.0.0.3 Moved <hash> to <fof_quantifier> so it's available in all languages.
%----v9.0.0.4 Removed ()s around <thf_defined_infix> and <thf_infix_unary> 
%----         Removed ()s around <tff_defined_infix> and <tff_infix_unary>
%----v9.0.0.5 Fixed typo in <ntf_domain_type>
%----v9.0.0.6 Converted <source> and it's descendents to grammar rules. That required adding
%----         a grammar rule for <intro_type>.
%----         Changed <file_name> to <atomic_word>, to allow non-quoted filenames.
%----v9.0.0.7 Linearised <thf_formula_list>, <tff_arguments>, <fof_formula_tuple_list>,
%----         <parent_list>, <info_items>, <general_terms>.
%----v9.0.0.8 Replaced <null> by <nothing> to avoid conflicts in Java parsers
%----v9.0.0.9 Allow only <<unsigned_integer> in a <name>
%--------------------------------------------------------------------------------------------------
%----README ... this header provides important meta- and usage information
%----
%----Intended uses of the various parts of the TPTP syntax are explained in the TPTP technical
%----manual, linked from www.tptp.org.
%----
%----Four kinds of separators are used, to indicate different types of rules:
%----  ::= is used for regular grammar rules, for syntactic parsing.
%----  :== is used for semantic grammar rules. These define specific values that make semantic
%----      sense when more general syntactic rules apply.
%----  ::- is used for rules that produce tokens.
%----  ::: is used for rules that define character classes used in the construction of tokens.
%----
%----White space may occur between any two tokens. White space is not specified in the grammar, but
%----there are some restrictions to ensure that the grammar is compatible with standard Prolog: a
%----<TPTP_file> should be readable with read/1.
%----
%----The syntax of comments is defined by the <comment> rule. Comments may occur between any two
%----tokens, but do not act as white space. Comments will normally be discarded at the lexical
%----level, but may be processed by systems that understand them (e.g., if the system comment
%----convention is followed).
%----
%----Multiple languages are defined. Depending on your need, you can implement just the one(s) you
%----need. The common rules for atoms, terms, etc, come after the definitions of the languages, and
%----mostly all needed for all the languages.
%----Top of Page-----------------------------------------------------------------------------------
%----Files. Empty file is OK.
<TPTP_file>            ::= <TPTP_input>*
<TPTP_input>           ::= <annotated_formula> | <include>

%----Formula records
<annotated_formula>    ::= <thf_annotated> | <tff_annotated> | <tcf_annotated> | <fof_annotated> |
                           <cnf_annotated> | <tpi_annotated>
%----Future languages may include ...  english | efof | tfof | mathml | ...
<tpi_annotated>        ::= tpi(<name>,<formula_role>,<tpi_formula><annotations>).
<tpi_formula>          ::= <fof_formula>
<thf_annotated>        ::= thf(<name>,<formula_role>,<thf_formula><annotations>).
<tff_annotated>        ::= tff(<name>,<formula_role>,<tff_formula><annotations>).
<tcf_annotated>        ::= tcf(<name>,<formula_role>,<tcf_formula><annotations>).
<fof_annotated>        ::= fof(<name>,<formula_role>,<fof_formula><annotations>).
<cnf_annotated>        ::= cnf(<name>,<formula_role>,<cnf_formula><annotations>).
<annotations>          ::= ,<source><optional_info> | <nothing>
%----In derivations the annotated formulae names must be unique, so that parent references (see
%----<inference_record>) are unambiguous.

%----Types for problems.
%----Note: The previous <source_type> from ...
%----   <formula_role> ::= <user_role>-<source>
%----... is now gone. Parsers may choose to be tolerant of it for backwards compatibility.
<formula_role>         ::= <lower_word> | <lower_word>-<general_term>
<formula_role>         :== axiom | hypothesis | definition | assumption | lemma | theorem |
                           corollary | conjecture | negated_conjecture | plain | type |
                           interpretation | fi_domain | fi_functors | fi_predicates | unknown
%----"axiom"s are accepted, without proof. There is no guarantee that the axioms of a problem are
%----consistent. "hypothesis"s are assumed to be true for a particular problem, and are used like
%----"axiom"s. "definition"s are intended to define symbols. They are either universally quantified
%----equations, or universally quantified equivalences with an atomic lefthand side. They can be
%----treated like "axiom"s. "assumption"s can be used like axioms, but must be discharged before a
%----derivation is complete. "lemma"s and "theorem"s have been proven from the "axiom"s. They can
%----be used like "axiom"s in problems, and a problem containing a non-redundant "lemma" or
%----"theorem" is ill-formed. They can also appear in derivations. "theorem"s are more important
%----than "lemma"s from the user perspective. "conjecture"s are to be proven from the
%----"axiom"(-like) formulae. A problem is solved only when all "conjecture"s are proven.
%----"negated_conjecture"s are formed from negation of a "conjecture" (usually in a FOF to CNF
%----conversion). "plain"s have no specified user semantics. "interpretation"s record all aspects
%----of an interpretation. "fi_domain", "fi_functors", and "fi_predicates" are are thge old way of
%----recording the domain, interpretation of functors, and interpretation of predicates, for a
%----finite interpretation. "type" defines the type globally for one symbol; treat as $true.
%----"unknown"s have unknown role, and this is an error situation.
%----Top of Page-----------------------------------------------------------------------------------
%----THF formulae.
<thf_formula>          ::= <thf_logic_formula> | <thf_atom_typing> | <thf_subtype>
<thf_logic_formula>    ::= <thf_unitary_formula> | <thf_unary_formula> | <thf_binary_formula> |
                           <thf_defined_infix> | <thf_definition> | <thf_sequent>
<thf_binary_formula>   ::= <thf_binary_nonassoc> | <thf_binary_assoc> | <thf_binary_type>
%----There's no precedence among binary connectives
<thf_binary_nonassoc>  ::= <thf_unit_formula> <nonassoc_connective> <thf_unit_formula>
<thf_binary_assoc>     ::= <thf_or_formula> | <thf_and_formula> | <thf_apply_formula>
<thf_or_formula>       ::= <thf_unit_formula> <vline> <thf_unit_formula> |
                           <thf_or_formula> <vline> <thf_unit_formula>
<thf_and_formula>      ::= <thf_unit_formula> & <thf_unit_formula> |
                           <thf_and_formula> & <thf_unit_formula>
%----@ (denoting apply) is left-associative and lambda is right-associative.
%----^ [X] : ^ [Y] : f @ g (where f is a <thf_apply_formula> and g is a <thf_unitary_formula>)
%----should be parsed as: (^ [X] : (^ [Y] : f)) @ g. That is, g is not in the scope of either
%----lambda.
<thf_apply_formula>    ::= <thf_unit_formula> @ <thf_unit_formula> |
                           <thf_apply_formula> @ <thf_unit_formula>
<thf_unit_formula>     ::= <thf_unitary_formula> | <thf_unary_formula> | <thf_defined_infix>
<thf_preunit_formula>  ::= <thf_unitary_formula> | <thf_prefix_unary>
<thf_unitary_formula>  ::= <thf_quantified_formula> | <thf_atomic_formula> | <variable> |
                           (<thf_logic_formula>)
%----All variables must be quantified
<thf_quantified_formula> ::= <thf_quantification> <thf_unit_formula>
<thf_quantification>   ::= <thf_quantifier> [<thf_variable_list>] :
<thf_variable_list>    ::= <thf_typed_variable> | <thf_typed_variable>,<thf_variable_list>
<thf_typed_variable>   ::= <variable> : <thf_top_level_type>
<thf_unary_formula>    ::= <thf_prefix_unary> | <thf_infix_unary>
<thf_prefix_unary>     ::= <thf_unary_connective> <thf_preunit_formula>
<thf_infix_unary>      ::= <thf_unitary_term> <infix_inequality> <thf_unitary_term>
<thf_atomic_formula>   ::= <thf_plain_atomic> | <thf_defined_atomic> | <thf_system_atomic> |
                           <thf_fof_function>
<thf_plain_atomic>     ::= <constant> | <thf_tuple>
%----<thf_plain_atomic> includes <thf_tuple> because tuples can be formulae
%----in logic definitions
<thf_defined_atomic>   ::= <defined_constant> | <thf_defined_term> | (<thf_conn_term>) |
                           <nhf_long_connective> | <thf_let>
% <thf_conditional>
%----<thf_conditional> is omitted from <thf_defined_atomic> because $ite is
%----read simply as a <thf_apply_formula>
<thf_defined_term>     ::= <defined_term> | <th1_defined_term>
%----The ()s are really optional. I have reformated the TPTP to include them so, e.g.,
%----! [X:foo] a = X is formatted as ! [X:foo] (a = X) to save the lives of parsers that would
%----parse it as (! [X:foo] a) = X and throw an error.
<thf_defined_infix>    ::= <thf_unitary_term> <defined_infix_pred> <thf_unitary_term>
% <thf_defined_infix>    ::= <thf_unitary_term> <defined_infix_pred> <thf_unitary_term>
%----Defined terms can't be formulae. See TFF. FIX HERE.
<thf_system_atomic>    ::= <system_constant>

%----<thf_conditional> is written and read as a <thf_apply_formula>
% <thf_conditional>      ::= $ite(<thf_logic_formula>,<thf_logic_formula>, <thf_logic_formula>)
<thf_let>              ::= $let(<thf_let_types>,<thf_let_defns>, <thf_logic_formula>)
<thf_let_types>        ::= <thf_atom_typing> | [<thf_atom_typing_list>]
<thf_atom_typing_list> ::= <thf_atom_typing> | <thf_atom_typing>,<thf_atom_typing_list>
<thf_let_defns>        ::= <thf_let_defn> | [<thf_let_defn_list>]
<thf_let_defn>         ::= <thf_logic_formula> <assignment> <thf_logic_formula>
<thf_let_defn_list>    ::= <thf_let_defn> | <thf_let_defn>,<thf_let_defn_list>

<thf_unitary_term>     ::= <thf_atomic_formula> | <variable> | (<thf_logic_formula>)
<thf_conn_term>        ::= <nonassoc_connective> | <assoc_connective> | <infix_equality> |
                           <infix_inequality> | <thf_unary_connective>
%----Note that syntactically this allows (p @ =), but for = the first argument must be known to
%----infer the type of =, so that's not allowed, i.e., only (= @ p).
<thf_tuple>            ::= [] | [<thf_formula_list>]

%----Allows first-order style in THF.
<thf_fof_function>     ::= <functor>(<thf_arguments>) | <defined_functor>(<thf_arguments>) |
                           <system_functor>(<thf_arguments>)
%----Arguments recurse back up to formulae (this is the THF world here)
<thf_arguments>        ::= <thf_formula_list>
<thf_formula_list>     ::= <thf_logic_formula><comma_thf_logic_formula>*
<comma_thf_logic_formula> ::= ,<thf_logic_formula>

%----<thf_top_level_type> appears after ":", where a type is being specified
%----for a term or variable. <thf_unitary_type> includes <thf_unitary_formula>,
%----so the syntax is very loose, but trying to be more specific about
%----<thf_unitary_type>s (ala the semantic rule) leads to reduce/reduce
%----conflicts.
<thf_atom_typing>      ::= <untyped_atom> : <thf_top_level_type> | (<thf_atom_typing>)
<thf_top_level_type>   ::= <thf_unitary_type> | <thf_mapping_type> | <thf_apply_type>
%----Removed along with adding <thf_binary_type> to <thf_binary_formula>, for
%----TH1 polymorphic types with binary after quantification.
%----      | (<thf_binary_type>)
<thf_unitary_type>     ::= <thf_unitary_formula>
<thf_unitary_type>     :== <thf_atomic_type> | <th1_quantified_type>
<thf_atomic_type>      :== <type_constant> | <defined_type> | <variable> | <thf_mapping_type> |
                           (<thf_atomic_type>)
<th1_quantified_type>  :== !> [<thf_variable_list>] : <thf_unitary_type>

<thf_apply_type>       ::= <thf_apply_formula>
<thf_binary_type>      ::= <thf_mapping_type> | <thf_xprod_type> | <thf_union_type>
%----Mapping is right-associative: o > o > o means o > (o > o).
<thf_mapping_type>     ::= <thf_unitary_type> <arrow> <thf_unitary_type> |
                           <thf_unitary_type> <arrow> <thf_mapping_type>
%----Xproduct is left-associative: o * o * o means (o * o) * o. Xproduct
%----can be replaced by tuple types.
<thf_xprod_type>       ::= <thf_unitary_type> <star> <thf_unitary_type> |
                           <thf_xprod_type> <star> <thf_unitary_type>
%----Union is left-associative: o + o + o means (o + o) + o.
<thf_union_type>       ::= <thf_unitary_type> <plus> <thf_unitary_type> |
                           <thf_union_type> <plus> <thf_unitary_type>
%----Tuple types, e.g., [a,b,c], are allowed (by the loose syntax) as tuples.
<thf_subtype>          ::= <untyped_atom> <subtype_sign> <atom>

%----These are also used for NHF logic definitions
<thf_definition>       ::= <thf_atomic_formula> <identical> <thf_logic_formula>
<thf_sequent>          ::= <thf_tuple> <gentzen_arrow> <thf_tuple>

%----Top of Page-----------------------------------------------------------------------------------
%----TFF formulae.
<tff_formula>          ::= <tff_logic_formula> | <tff_atom_typing> | <tff_subtype>
<tff_logic_formula>    ::= <tff_unitary_formula> | <tff_unary_formula> | <tff_binary_formula> |
                           <tff_defined_infix> | <txf_definition> | <txf_sequent>
%----<tff_defined_infix> up here to avoid confusion in a = b | p, for TXF.
%----For plain TFF it can be in <tff_defined_atomic>

<tff_binary_formula>   ::= <tff_binary_nonassoc> | <tff_binary_assoc>
<tff_binary_nonassoc>  ::= <tff_unit_formula> <nonassoc_connective> <tff_unit_formula>
<tff_binary_assoc>     ::= <tff_or_formula> | <tff_and_formula>
<tff_or_formula>       ::= <tff_unit_formula> <vline> <tff_unit_formula> |
                           <tff_or_formula> <vline> <tff_unit_formula>
<tff_and_formula>      ::= <tff_unit_formula> & <tff_unit_formula> |
                           <tff_and_formula> & <tff_unit_formula>
<tff_unit_formula>     ::= <tff_unitary_formula> | <tff_unary_formula> | <tff_defined_infix>
<tff_preunit_formula>  ::= <tff_unitary_formula> | <tff_prefix_unary>
<tff_unitary_formula>  ::= <tff_quantified_formula> | <tff_atomic_formula> |
                           <txf_unitary_formula> | (<tff_logic_formula>)
<txf_unitary_formula>  ::= <variable>
<tff_quantified_formula> ::= <tff_quantifier> [<tff_variable_list>] : <tff_unit_formula>
%----Quantified formulae bind tightly, so cannot include infix formulae

<tff_variable_list>    ::= <tff_variable> | <tff_variable>,<tff_variable_list>
<tff_variable>         ::= <tff_typed_variable> | <variable>
<tff_typed_variable>   ::= <variable> : <tff_atomic_type>
<tff_unary_formula>    ::= <tff_prefix_unary> | <tff_infix_unary>
%FOR PLAIN TFF <fof_infix_unary>
<tff_prefix_unary>     ::= <tff_unary_connective> <tff_preunit_formula>
<tff_infix_unary>      ::= <tff_unitary_term> <infix_inequality> <tff_unitary_term>

%FOR PLAIN TFF <tff_atomic_formula>   ::= <fof_atomic_formula>
<tff_atomic_formula>   ::= <tff_plain_atomic> | <tff_defined_atomic> | <tff_system_atomic>
<tff_plain_atomic>     ::= <constant> | <functor>(<tff_arguments>)
<tff_plain_atomic>     :== <proposition> | <predicate>(<tff_arguments>)
<tff_defined_atomic>   ::= <tff_defined_plain>
%---To avoid confusion in TXF a = b | p   | <tff_defined_infix>
<tff_defined_plain>    ::= <defined_constant> | <defined_functor>(<tff_arguments>) | <nxf_atom> |
                           <txf_let>
% <txf_conditional>
%----<txf_conditional> is omitted from <tff_defined_plain> because $ite is
%----read simply as a <tff_atomic_formula>
<tff_defined_plain>    :== <defined_proposition> | <defined_predicate>(<tff_arguments>) |
                           <nxf_atom> | <txf_conditional> | <txf_let>
%----This is the only one that is strictly a formula, type $o. In TXF, if the
%----LHS/RHS is a formula that does not look like a term, then it must be ()ed
%----per <tff_unitary_term>. If you put an un()ed formula that looks like a term
%----it will be interpreted as a term.
<tff_defined_infix>    ::= <tff_unitary_term> <defined_infix_pred> <tff_unitary_term>
<tff_system_atomic>    ::= <system_constant> | <system_functor>(<tff_arguments>)
<tff_system_atomic>    :== <system_proposition> | <system_predicate>(<tff_arguments>)
%----<txf_conditional> is written and read as a <tff_defined_atomic>
<txf_conditional>      :== $ite(<tff_logic_formula>,<tff_term>,<tff_term>)
<txf_let>              ::= $let(<txf_let_types>,<txf_let_defns>,<tff_term>)
<txf_let_types>        ::= <tff_atom_typing> | [<tff_atom_typing_list>]
<tff_atom_typing_list> ::= <tff_atom_typing> | <tff_atom_typing>,<tff_atom_typing_list>
<txf_let_defns>        ::= <txf_let_defn> | [<txf_let_defn_list>]
<txf_let_defn>         ::= <txf_let_LHS> <assignment> <tff_term>
<txf_let_LHS>          ::= <tff_plain_atomic> | <txf_tuple>
<txf_let_defn_list>    ::= <txf_let_defn> | <txf_let_defn>,<txf_let_defn_list>
<nxf_atom>             ::= <nxf_long_connective> @ (<tff_arguments>)

<tff_term>             ::= <tff_logic_formula> | <defined_term> | <txf_tuple>
<tff_unitary_term>     ::= <tff_atomic_formula> | <defined_term> | <txf_tuple> | <variable> |
                           (<tff_logic_formula>)
<txf_tuple>            ::= [] | [<tff_arguments>]

<tff_arguments>        ::= <tff_term><comma_tff_term>*
<comma_tff_term>       ::= ,<tff_term>

%----<tff_atom_typing> can appear only at top level.
<tff_atom_typing>      ::= <untyped_atom> : <tff_top_level_type> | (<tff_atom_typing>)
<tff_top_level_type>   ::= <tff_atomic_type> | <tff_non_atomic_type>
<tff_non_atomic_type>  ::= <tff_mapping_type> | <tf1_quantified_type> | (<tff_non_atomic_type>)
<tf1_quantified_type>  ::= !> [<tff_variable_list>] : <tff_monotype>
<tff_monotype>         ::= <tff_atomic_type> | (<tff_mapping_type>) | <tf1_quantified_type>
<tff_unitary_type>     ::= <tff_atomic_type> | (<tff_xprod_type>)
<tff_atomic_type>      ::= <type_constant> | <defined_type> | <variable> |
                           <type_functor>(<tff_type_arguments>) | (<tff_atomic_type>) |
                           <txf_tuple_type>
<tff_type_arguments>   ::= <tff_atomic_type> | <tff_atomic_type>,<tff_type_arguments>
<tff_mapping_type>     ::= <tff_unitary_type> <arrow> <tff_atomic_type>
<tff_xprod_type>       ::= <tff_unitary_type> <star> <tff_atomic_type> |
                           <tff_xprod_type> <star> <tff_atomic_type>
%----For TXF only
<txf_tuple_type>       ::= [<tff_type_list>]
<tff_type_list>        ::= <tff_top_level_type> | <tff_top_level_type>,<tff_type_list>

<tff_subtype>          ::= <untyped_atom> <subtype_sign> <atom>

%----These are also used for NXF logic definitions
<txf_definition>       ::= <tff_atomic_formula> <identical> <tff_term>
<txf_sequent>          ::= <txf_tuple> <gentzen_arrow> <txf_tuple>

%----Top of Page-----------------------------------------------------------------------------------
%----Typed non-classical here
%----Have to duplicate NHF and NXF because they lead to <thf_definition> and <txf_definition>
<nhf_long_connective>  ::= {<ntf_connective_name>} | {<ntf_connective_name>(<nhf_parameter_list>)}
<nhf_parameter_list>   ::= <nhf_parameter> | <nhf_parameter>,<nhf_parameter_list>
<nhf_parameter>        ::= <ntf_index> | <nhf_key_pair>
<nhf_key_pair>         ::= <thf_definition>

<nxf_long_connective>  ::= {<ntf_connective_name>} | {<ntf_connective_name>(<nxf_parameter_list>)}
<nxf_parameter_list>   ::= <nxf_parameter> | <nxf_parameter>,<nxf_parameter_list>
<nxf_parameter>        ::= <ntf_index> | <nxf_key_pair>
<nxf_key_pair>         ::= <txf_definition>

<ntf_connective_name>  ::= <def_or_sys_constant>
<ntf_index>            ::= <hash><tff_unitary_term>
<ntf_short_connective> ::= [.] | <less_sign>.<arrow> | {.} | (.)
%----Short connectives are unary operators, cannot be indexed
%----                      | [<ntf_index>] | <less_sign><ntf_index><arrow> |
%----                      {<ntf_index>}

%----NXF logic specifications. Captured by <txf_definition>
%----NHF logic specifications are captured by <thf_definition>
<ntf_semantics_spec>   :== <ntf_logic_name> <identical> [<ntf_logic_spec_list>]
<ntf_logic_name>       :== $modal | $alethic_modal | $deontic_modal | $epistemic_modal |
                           $doxastic_modal | $temporal_instant
<ntf_logic_spec_list>  :== <ntf_logic_spec> | <ntf_logic_spec>,<ntf_logic_spec_list>
<ntf_logic_spec>       :== <ntf_domains_spec> | <ntf_designation_spec> | <ntf_terms_spec> |
                           <ntf_modalities_spec> | <ntf_time_spec>
<ntf_domains_spec>     :== $domains <identical> <ntf_domains_value>
<ntf_domains_value>    :== <ntf_domain_type> | [<ntf_domain_type_list>]
<ntf_domain_type>      :== $constant | $varying | $cumulative | $decreasing |
                           <tff_atomic_type> <identical> <ntf_domains_value>
<ntf_domains_type_list> :== <ntf_domain_type> | <ntf_domain_type>,<ntf_domain_type_list>
<ntf_designation_spec> :== $designation <identical> <ntf_designation_value>
<ntf_designation_value>    :== <ntf_designation_type> | [<ntf_designation_type_list>]
<ntf_designation_type> :== $rigid | $flexible |
                           <tff_atomic_type> <identical> <ntf_designation_value>
<ntf_designation_type_list> :== <ntf_designation_type> |
                           <ntf_designation_type>,<ntf_designation_type_list>
<ntf_terms_spec>       :== $terms <identical> <ntf_terms_value>
<ntf_terms_value>      :== <ntf_terms_type> | [<ntf_terms_type_list>]
<ntf_terms_type>       :== $local | $global | <tff_atomic_type> <identical> <ntf_terms_value>
<ntf_terms_type_list>  :== <ntf_terms_type> | <ntf_terms_type>,<ntf_terms_type_list>
<ntf_modalities_spec>  :== $modalities <identical> <ntf_modalities_value>
<ntf_modalities_value> :== <ntf_modalities_type> | [<ntf_modalities_type_list>]
<ntf_modalities_type>  :== <ntf_modal_system> | <ntf_modal_axiom> |
                           <tff_atomic_type> <identical> <ntf_modalities_value>
<ntf_modalities_type_list> :== <ntf_modalities_type> |
                           <ntf_modalities_type>,<ntf_modalities_type_list>
<ntf_time_spec>        :== $time <identical> <ntf_time_value>
<ntf_time_value>       :== <ntf_time_type> | [<ntf_time_type_list>]
<ntf_time_type>        :== $reflexivity | $irreflexivity | $transitivity | $asymmetry |
                           $anti_symmetry | $linearity | $forward_linearity | $backward_linearity |
                           $beginning | $end | $no_beginning | $no_end | $density |
                           $forward_discreteness | $backward_discreteness |
                           <tff_atomic_type> <identical> <ntf_time_value>
<ntf_time_type_list>   :== <ntf_time_type> | <ntf_time_type>,<ntf_time_type_list>

<ntf_modal_system>     :== $modal_system_K | $modal_system_M | $modal_system_B | $modal_system_D |
                           $modal_system_S4 | $modal_system_S5
<ntf_modal_axiom>      :== $modal_axiom_K | $modal_axiom_M | $modal_axiom_B | $modal_axiom_D |
                           $modal_axiom_4 | $modal_axiom_5
%----Top of Page-----------------------------------------------------------------------------------
%----TCF formulae.
<tcf_formula>          ::= <tcf_logic_formula> | <tff_atom_typing>
<tcf_logic_formula>    ::= <tcf_quantified_formula> | <cnf_formula>
<tcf_quantified_formula> ::= ! [<tff_variable_list>] : <tcf_logic_formula>

%----Top of Page-----------------------------------------------------------------------------------
%----FOF formulae.
<fof_formula>          ::= <fof_logic_formula> | <fof_sequent>
<fof_logic_formula>    ::= <fof_binary_formula> | <fof_unary_formula> | <fof_unitary_formula>
%----Future answer variable ideas | <answer_formula>
<fof_binary_formula>   ::= <fof_binary_nonassoc> | <fof_binary_assoc>
%----Only some binary connectives are associative
%----There's no precedence among binary connectives
<fof_binary_nonassoc>  ::= <fof_unit_formula> <nonassoc_connective> <fof_unit_formula>
%----Associative connectives & and | are in <binary_assoc>
<fof_binary_assoc>     ::= <fof_or_formula> | <fof_and_formula>
<fof_or_formula>       ::= <fof_unit_formula> <vline> <fof_unit_formula> |
                           <fof_or_formula> <vline> <fof_unit_formula>
<fof_and_formula>      ::= <fof_unit_formula> & <fof_unit_formula> |
                           <fof_and_formula> & <fof_unit_formula>
<fof_unary_formula>    ::= <unary_connective> <fof_unit_formula> | <fof_infix_unary>
%----<fof_term> != <fof_term> is equivalent to ~ <fof_term> = <fof_term>
<fof_infix_unary>      ::= <fof_term> <infix_inequality> <fof_term>
%----<fof_unitary_formula> are in ()s or do not have a connective
<fof_unit_formula>     ::= <fof_unitary_formula> | <fof_unary_formula>
<fof_unitary_formula>  ::= <fof_quantified_formula> | <fof_atomic_formula> | (<fof_logic_formula>)
%----All variables must be quantified
<fof_quantified_formula> ::= <fof_quantifier> [<fof_variable_list>] : <fof_unit_formula>
<fof_variable_list>    ::= <variable> | <variable>,<fof_variable_list>
<fof_atomic_formula>   ::= <fof_plain_atomic_formula> | <fof_defined_atomic_formula> |
                           <fof_system_atomic_formula>
<fof_plain_atomic_formula> ::= <fof_plain_term>
<fof_plain_atomic_formula> :== <proposition> | <predicate>(<fof_arguments>)
<fof_defined_atomic_formula> ::= <fof_defined_plain_formula> | <fof_defined_infix_formula>
<fof_defined_plain_formula> ::= <fof_defined_plain_term>
<fof_defined_plain_formula> :== <defined_proposition> | <defined_predicate>(<fof_arguments>)
<fof_defined_infix_formula> ::= <fof_term> <defined_infix_pred> <fof_term>
%----System terms have system specific interpretations
<fof_system_atomic_formula> ::= <fof_system_term>
%----<fof_system_atomic_formula>s are used for evaluable predicates that are
%----available in particular tools. The predicate names are not controlled by
%----the TPTP syntax, so use with due care. Same for <fof_system_term>s.

%----FOF terms.
<fof_plain_term>       ::= <constant> | <functor>(<fof_arguments>)
%----Defined terms have TPTP specific interpretations
<fof_defined_term>     ::= <defined_term> | <fof_defined_atomic_term>
<fof_defined_atomic_term>  ::= <fof_defined_plain_term>
%----None yet             | <defined_infix_term>
%----None yet <defined_infix_term> ::= <fof_term> <defined_infix_func> <fof_term>
%----None yet <defined_infix_func> ::=
<fof_defined_plain_term>   ::= <defined_constant> | <defined_functor>(<fof_arguments>)
%----System terms have system specific interpretations
<fof_system_term>      ::= <system_constant> | <system_functor>(<fof_arguments>)
%----Arguments recurse back to terms (this is the FOF world here)
<fof_arguments>        ::= <fof_term> | <fof_term>,<fof_arguments>
%----These are terms used as arguments. Not the entry point for terms because
%----<fof_plain_term> is also used as <fof_plain_atomic_formula>. The <tff_
%----options are for only TFF, but are here because <fof_plain_atomic_formula>
%----is used in <fof_atomic_formula>, which is also used as
%----<tff_atomic_formula>.
<fof_term>             ::= <fof_function_term> | <variable>
<fof_function_term>    ::= <fof_plain_term> | <fof_defined_term> | <fof_system_term>

%----Top of Page-----------------------------------------------------------------------------------
%----This section is the FOFX syntax. Not yet in use.
<fof_sequent>          ::= <fof_formula_tuple> <gentzen_arrow> <fof_formula_tuple> |
                           (<fof_sequent>)

<fof_formula_tuple>    ::= [] | [<fof_formula_tuple_list>]
<fof_formula_tuple_list>  ::= <fof_logic_formula><comma_fof_logic_formula>*
<comma_fof_logic_formula> ::= ,<fof_logic_formula>

%----Top of Page-----------------------------------------------------------------------------------
%----CNF formulae (variables implicitly universally quantified)
<cnf_formula>          ::= <cnf_disjunction> | ( <cnf_formula> )
<cnf_disjunction>      ::= <cnf_literal> | <cnf_disjunction> <vline> <cnf_literal>
<cnf_literal>          ::= <fof_atomic_formula> | ~ <fof_atomic_formula> |
                           ~ (<fof_atomic_formula>) | <fof_infix_unary>

%----Top of Page-----------------------------------------------------------------------------------
%----Connectives - THF
<thf_quantifier>       ::= <fof_quantifier> | <th0_quantifier> | <th1_quantifier>
<thf_unary_connective> ::= <unary_connective> | <ntf_short_connective>
%----TH0 quantifiers are also available in TH1
<th1_quantifier>       ::= !> | ?*
<th0_quantifier>       ::= ^ | @+ | @-
%----Connectives - THF and TFF
<subtype_sign>         ::= <<
%----Connectives - TFF
<tff_unary_connective> ::= <unary_connective> | <ntf_short_connective>
<tff_quantifier>       ::= <fof_quantifier>
%----Connectives - FOF
<fof_quantifier>       ::= ! | ? | <hash>
<nonassoc_connective>  ::= <=> | => | <= | <~> | ~<vline> | ~&
<assoc_connective>     ::= <vline> | &
<unary_connective>     ::= ~
%----The seqent arrow
<gentzen_arrow>        ::= -->
<assignment>           ::= :=
<identical>            ::= ==

%----Types for THF and TFF
<type_constant>        ::= <type_functor>
<type_functor>         ::= <atomic_word>
<defined_type>         ::= <atomic_defined_word>
<defined_type>         :== $oType | $o | $iType | $i | $tType | $real | $rat | $int
%----$oType/$o is the Boolean type, i.e., the type of $true and $false.
%----$iType/$i is non-empty type of individuals, which may be finite or
%----infinite. $tType is the type of all types. $real is the type of <real>s.
%----$rat is the type of <rational>s. $int is the type of <signed_integer>s
%----and <unsigned_integer>s.
<system_type>          :== <atomic_system_word>

%----For all language types
<atom>                 ::= <untyped_atom> | <defined_constant>
<untyped_atom>         ::= <constant> | <system_constant>

<proposition>          :== <predicate>
<predicate>            :== <atomic_word>
<defined_proposition>  :== <defined_predicate>
<defined_proposition>  :== $true | $false
<defined_predicate>    :== <atomic_defined_word>
<defined_predicate>    :== $distinct |
                           $less | $lesseq | $greater | $greatereq | $is_int | $is_rat |
                           $box | $dia
%----$distinct is part of the TFF, TXF, THF, NXF, and NHF syntax. $distinct takes one or more
%----constants of the same type as arguments, and indicates that the arguments are pairwise !=.
%----$distinct can be used only as a fact in an axiom-like annotated formula (e.g., not in a
%----conjecture), and not under any connective.
<defined_infix_pred>   ::= <infix_equality>
<system_proposition>   :== <system_predicate>
<system_predicate>     :== <atomic_system_word>
<infix_equality>       ::= =
<infix_inequality>     ::= !=

<constant>             ::= <functor>
<functor>              ::= <atomic_word>
<defined_constant>     ::= <defined_functor>
<defined_functor>      ::= <atomic_defined_word>
<defined_functor>      :== $uminus | $sum | $difference | $product |
                           $quotient | $quotient_e | $quotient_t | $quotient_f |
                           $remainder_e | $remainder_t | $remainder_f |
                           $floor | $ceiling | $truncate | $round |
                           $to_int | $to_rat | $to_real
<system_constant>      ::= <system_functor>
<system_functor>       ::= <atomic_system_word>
<def_or_sys_constant>  ::= <defined_constant> | <system_constant>
<th1_defined_term>     ::= !! | ?? | @@+ | @@- | @=
<defined_term>         ::= <number> | <distinct_object>
<variable>             ::= <upper_word>
%----Top of Page-----------------------------------------------------------------------------------
%----Formula sources
%----Expanded semantic rules for IDV. It was <source>               ::= <general_term>
<source>               ::= <dag_source> | <internal_source> | <external_source> | unknown |
                           [<sources>]
%----Alternative sources are recorded like this, thus allowing representation
%----of alternative derivations with shared parts.
<sources>              ::= <source> | <source>,<sources>
%----Only a <dag_source> can be a <name>, i.e., derived formulae can be
%----identified by a <name> or an <inference_record>
<dag_source>           ::= <name> | <inference_record>
<inference_record>     ::= inference(<inference_rule>,<useful_info>,<parents>)
<inference_rule>       ::= <atomic_word>
%----Examples are          deduction | modus_tollens | modus_ponens | rewrite | resolution |
%----                      paramodulation | factorization | cnf_conversion | cnf_refutation | ...
<internal_source>      ::= introduced(<intro_type>,<useful_info>,<parents>)
<intro_type>           ::= <atomic_word>
<intro_type>           :== definition | tautology | assumption
%----This should be used to record the symbol being defined, or the function
%----for the axiom of choice
<external_source>      ::= <file_source> | <theory> | <creator_source>
<file_source>          ::= file(<file_name><file_info>)
<file_info>            ::= ,<name> | <nothing>
<theory>               ::= theory(<theory_name><optional_info>)
<theory_name>          ::= <atomic_word>
<theory_name>          :== equality | ac
%----More theory names may be added in the future. The <optional_info> is
%----used to store, e.g., which axioms of equality have been implicitly used,
%----e.g., theory(equality,[rst]). Standard format still to be decided.
<creator_source>       ::= creator(<creator_name>,<useful_info>,<parents>)
<creator_name>         ::= <atomic_word>

%----<parents> can be empty in cases when there is a justification for a tautologous theorem. In 
%----cases when a tautology is introduced as a leaf, e.g., for splitting, then use an 
%----<internal_source>.
<parents>              ::= [] | [<parent_list>]
<parent_list>          ::= <parent_info><comma_parent_info>*
<comma_parent_info>    ::= ,<parent_info>
<parent_info>          ::= <source><parent_details>
<parent_details>       ::= :<general_list> | <nothing>

%----Useful info fields
<optional_info>        ::= ,<useful_info> | <nothing>
<useful_info>          ::= <general_list>
<useful_info>          :== [] | [<info_items>]
<info_items>           :== <info_item><comma_info_item>*
<comma_info_items>     :== ,<info_item>
<info_item>            :== <formula_item> | <inference_item> | <general_function>
%----Useful info for formula records
<formula_item>         :== <description_item> | <iquote_item>
<description_item>     :== description(<atomic_word>)
<iquote_item>          :== iquote(<atomic_word>)
%----<iquote_item>s are used for recording exactly what the system output about
%----the inference step. In the future it is planned to encode this information
%----in standardized forms as <parent_details> in each <inference_record>.
%----Useful info for inference records
<inference_item>       :== <inference_status> | <assumptions_record> | <new_symbol_record> |
                           <refutation>
<inference_status>     :== status(<status_value>) | <inference_info>
%----These are the success status values from the SZS ontology. The most
%----commonly used values are:
%----  thm - Every model of the parent formulae is a model of the inferred formula. Regular logical
%----        consequences.
%----  cth - Every model of the parent formulae is a model of the negation of the inferred formula.
%----        Used for negation of conjectures in FOF to CNF conversion.
%----  esa - There exists a model of the parent formulae iff there exists a model of the inferred
%----        formula. Used for Skolemization steps.
%----For the full hierarchy see the SZSOntology file distributed with the TPTP.
<status_value>         :== suc | unp | sap | esa | sat | fsa | thm | eqv | tac | wec | eth | tau |
                           wtc | wth | cax | sca | tca | wca | cup | csp | ecs | csa | cth | ceq |
                           unc | wcc | ect | fun | uns | wuc | wct | scc | uca | noc
%----<inference_info> is used to record standard information associated with an arbitrary inference
%----rule. The <inference_rule> is the same as the <inference_rule> of the <inference_record>. The
%----<atomic_word> indicates the information being recorded in the <general_list>. The
%----<atomic_word> are (loosely) set by TPTP conventions, and include esplit, sr_split, and
%----discharge.
<inference_info>       :== <inference_rule>(<atomic_word>,<general_list>)
%----An <assumptions_record> lists the names of assumptions upon which this
%----inferred formula depends. These must be discharged in a completed proof.
<assumptions_record>   :== assumptions([<name_list>])
%----A <refutation> record names a file in which the inference recorded here
%----is recorded as a proof by refutation.
<refutation>           :== refutation(<file_source>)
%----A <new_symbol_record> provides information about a newly introduced symbol.
<new_symbol_record>    :== new_symbols(<atomic_word>,[<new_symbol_list>])
<new_symbol_list>      :== <principal_symbol> | <principal_symbol>,<new_symbol_list>
%----Principal symbols are predicates, functions, variables
<principal_symbol>     :== <functor> | <variable>

%----Include directives
<include>              ::= include(<file_name><include_optionals>).
<include_optionals>    ::= <nothing> | ,<formula_selection> | ,<formula_selection>,<space_name>
<formula_selection>    ::= [<name_list>] | <star>
<name_list>            ::= <name> | <name>,<name_list>
<space_name>           ::= <name>

%----Non-logical data
<general_term>         ::= <general_data> | <general_data>:<general_term> | <general_list>
<general_data>         ::= <atomic_word> | <general_function> | <variable> | <number> |
                           <distinct_object> | <formula_data>
<general_function>     ::= <atomic_word>(<general_terms>)
%----A <general_data> bind() term is used to record a variable binding in an
%----inference, as an element of the <parent_details> list.
<general_data>         :== bind(<variable>,<formula_data>) | bind_type(<variable>,<bound_type>)
<bound_type>           :== $thf(<thf_top_level_type>) | $tff(<tff_top_level_type>)
<formula_data>         ::= $thf(<thf_formula>) | $tff(<tff_formula>) | $fof(<fof_formula>) |
                           $cnf(<cnf_formula>) | $fot(<fof_term>)
<general_list>         ::= [] | [<general_terms>]
<general_terms>        ::= <general_term><comma_general_term>*
<comma_general_term>   ::= ,<general_term>

%----General purpose
<name>                 ::= <atomic_word> | <unsigned_integer>
%----Integer names are expected to be unsigned
<atomic_word>          ::= <lower_word> | <single_quoted>
%----<single_quoted>s are the enclosed <atomic_word> without the quotes. Therefore the <lower_word>
%----<atomic_word> cat and the <single_quoted> <atomic_word> 'cat' are the same, but <numbers>s and
%----<variable>s are not <lower_word>s, so 123' and 123, and 'X' and X, are different. Quotes can
%----be removed from a <single_quoted> <atomic_word>, and is recommended if doing so produces a
%----<lower_word> <atomic_word>.
<atomic_defined_word>  ::= <dollar_word>
<atomic_system_word>   ::= <dollar_dollar_word>
<number>               ::= <integer> | <rational> | <real>
%----Numbers are always interpreted as themselves, and are thus implicitly
%----distinct if they have different values, e.g., 1 != 2 is an implicit axiom.
%----All numbers are base 10 at the moment.
<file_name>            ::= <atomic_word>
<nothing>              ::=
%----Top of Page-----------------------------------------------------------------------------------
%----Rules from here on down are for defining tokens (terminal symbols) of the grammar, assuming
%----they will be recognized by a lexical scanner.
%----A ::- rule defines a token, a ::: rule defines a macro that is not a token. Usual regexp
%----notation is used. Single characters are always placed in []s to disable any special meanings
%----(for uniformity this is done to all characters, not only those with special meanings).

%----These are tokens that appear in the syntax rules above. No rules defined here because they
%----appear explicitly in the syntax rules, except that <vline>, <star>, <plus> denote "|", "*",
%----"+", respectively.
%----Keywords:    fof cnf thf tff include
%----Punctuation: ( ) , . [ ] :
%----Operators:   ! ? ~ & | <=> => <= <~> ~| ~& * +
%----Predicates:  = != $true $false

%----For lex/yacc there cannot be spaces on either side of the | here
<comment>              ::- <comment_line>|<comment_block>
<comment_line>         ::- [%]<printable_char>*
<comment_block>        ::: [/][*]<not_star_slash>[*][*]*[/]
<not_star_slash>       ::: ([^*]*[*][*]*[^/*])*[^*]*
%----Defined comments are a convention used for annotations that are used as additional input for
%----systems. They look like comments, but start with %$ or /*$. A wily user of the syntax can
%----notice the $ and extract information from the "comment" and pass that on as input to the
%----system. They are analogous to pragmas in programming languages. To extract these separately
%----from regular comments, the rules are:
%----  <defined_comment>    ::- <def_comment_line>|<def_comment_block>
%----  <def_comment_line>   ::: [%]<dollar><printable_char>*
%----  <def_comment_block>  ::: [/][*]<dollar><not_star_slash>[*][*]*[/]
%----A string that matches both <defined_comment> and <comment> should be recognized as
%----<defined_comment>, so put these before <comment>. Defined comments that are in use include:
%----    TO BE ANNOUNCED
%----System comments are a convention used for annotations that may used as additional input to a
%----specific system. They look like comments, but start with %$$ or /*$$. A wily user of the
%----syntax can notice the $$ and extract information from the "comment" and pass that on as input
%----to the system. The specific system for which the information is intended should be identified
%----after the $$, e.g., /*$$Otter 3.3: Demodulator */ To extract these separately from regular
%----comments, the rules are:
%----  <system_comment>     ::- <sys_comment_line>|<sys_comment_block>
%----  <sys_comment_line>   ::: [%]<dollar><dollar><printable_char>*
%----  <sys_comment_block>  ::: [/][*]<dollar><dollar><not_star_slash>[*][*]*[/]
%----A string that matches both <system_comment> and <defined_comment> should
%----be recognized as <system_comment>, so put these before <defined_comment>.

<single_quoted>        ::- <single_quote><sq_char><sq_char>*<single_quote>
%----<single_quoted>s contain visible characters. \ is the escape character for ' and \, i.e.,
%----\' is not the end of the <single_quoted>. The token does not include the outer quotes, e.g.,
%----'cat' and cat are the same. See <atomic_word> for information about stripping the quotes.

<distinct_object>      ::- <double_quote><do_char>*<double_quote>
%---Space and visible characters upto ~, except " and \ distinct_object>s contain visible
%----characters. \ is the escape character for " and \, i.e., \" is not the end of the
%----<distinct_object>. <distinct_object>s are different from (but may be equal to) other tokens,
%----e.g., "cat" is different from 'cat' and cat. Distinct objects are always interpreted as
%----themselves, so if they are different they are unequal, e.g., "Apple" != "Microsoft" is
%----implicit.

<dollar_word>          ::- <dollar><alpha_numeric>*
<dollar_dollar_word>   ::- <dollar><dollar><alpha_numeric>*
<upper_word>           ::- <upper_alpha><alpha_numeric>*
<lower_word>           ::- <lower_alpha><alpha_numeric>*

%----Tokens used in syntax, and cannot be character classes
<vline>                ::- [|]
<star>                 ::- [*]
<plus>                 ::- [+]
<arrow>                ::- [>]
<less_sign>            ::- [<]
<hash>                 ::- [#]

%----Numbers. Signs are made part of the same token here.
<real>                 ::- (<signed_real>|<unsigned_real>)
<signed_real>          ::- <sign><unsigned_real>
<unsigned_real>        ::- (<decimal_fraction>|<decimal_exponent>)
<rational>             ::- (<signed_rational>|<unsigned_rational>)
<signed_rational>      ::- <sign><unsigned_rational>
<unsigned_rational>    ::- <decimal><slash><positive_decimal>
<integer>              ::- (<signed_integer>|<unsigned_integer>)
<signed_integer>       ::- <sign><unsigned_integer>
<unsigned_integer>     ::- <decimal>
<decimal>              ::- (<zero_numeric>|<positive_decimal>)
<positive_decimal>     ::- <non_zero_numeric><numeric>*
<decimal_exponent>     ::- (<decimal>|<decimal_fraction>)<exponent><exp_integer>
<decimal_fraction>     ::- <decimal><dot_decimal>
<dot_decimal>          ::- <dot><numeric><numeric>*
<exp_integer>          ::- (<signed_exp_integer>|<unsigned_exp_integer>)
<signed_exp_integer>   ::- <sign><unsigned_exp_integer>
<unsigned_exp_integer> ::- <numeric><numeric>*

<slash>                ::- <slash_char>
<slosh>                ::- <slosh_char>

%----Character classes
<percentage_sign>      ::: [%]
<double_quote>         ::: ["]
<do_char>              ::: ([\40-\41\43-\133\135-\176]|[\\]["\\])
<single_quote>         ::: [']
%---Space and visible characters upto ~, except ' and \
<sq_char>              ::: ([\40-\46\50-\133\135-\176]|[\\]['\\])
<sign>                 ::: [+-]
<dot>                  ::: [.]
<exponent>             ::: [Ee]
<slash_char>           ::: [/]
<slosh_char>           ::: [\\]
%% <bar>                  ::: [|]
<zero_numeric>         ::: [0]
<non_zero_numeric>     ::: [1-9]
<numeric>              ::: [0-9]
<lower_alpha>          ::: [a-z]
<upper_alpha>          ::: [A-Z]
<alpha_numeric>        ::: (<lower_alpha>|<upper_alpha>|<numeric>|[_])
<dollar>               ::: [$]
<printable_char>       ::: .
%----<printable_char> is any printable ASCII character, codes 32 (space) to 126 (tilde).
%----<printable_char> does not include tabs, newlines, bells, etc. The use of . does not not
%----exclude tab, so this is a bit loose.
<viewable_char>        ::: [.\n]
%----Top of Page-----------------------------------------------------------------------------------