The NTF format: Extension of the logic specification

Melanie Taprogge, University of Greifwald TPTPTP 2024, Nancy, France

jww. A. Steen, G. Sutcliffe, T. Scholl, C. Benzmüller, D. Fuenmayor

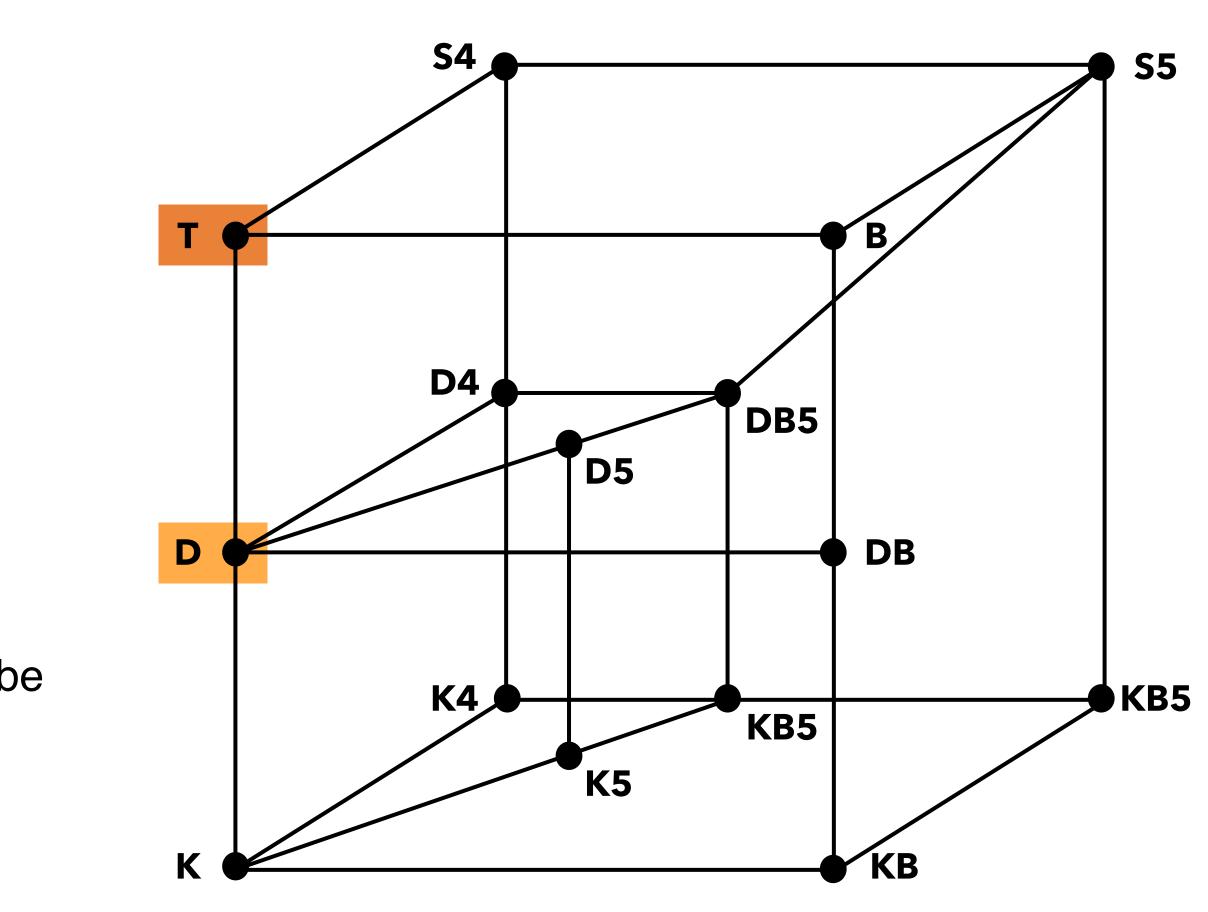
UNIVERSITÄT GREIFSWALD Wissen lockt. Seit 1456

We have seen that we can characterise modal logics based on the properties of the box operators ...

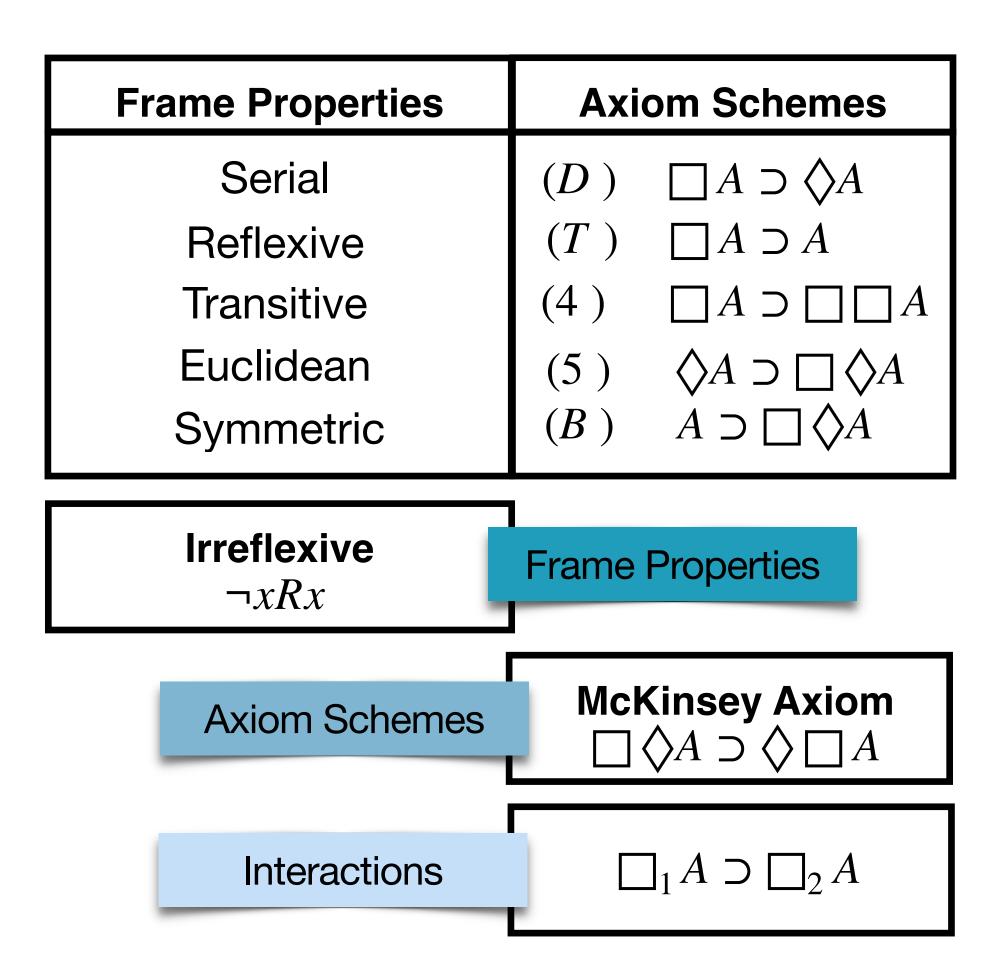
Frame Properties	Axiom Schemes
Serial	$(D) \Box A \supset \diamondsuit A$
Reflexive	$(T) \qquad \Box A \supset A$
Transitive	$(4) \qquad \Box A \supset \Box \Box A$
Euclidean	$(5) \qquad \diamondsuit A \supset \Box \diamondsuit A$
Symmetric	$(B) \stackrel{\cdot}{A} \supset \Box \diamondsuit \stackrel{\cdot}{A}$

... and that we can use the logics of the modal logic cube to define logics in the logic specification ...

```
thf(logic_spec, logic, $modal == [
$modalities == [
$modal_system_T,
{$box(#1)} ==
[$modal_system_D],
...]]).
```

... but is that all there is to modal logics? No!



The NTF format: Extending the logic specification, TPTPTP 2024, Nancy, France

How can we extend the TPTP syntax to account for this?

We can express axiom-schemes and frame properties in the existing syntax...

Frame Properties

-> Formulation of semantics in meta logic (HOL)

----- type of worlds ![X: \$ki_world] : (~\$ki_accessible(X,X)) Predicate representing R -----

Axiom Schemes

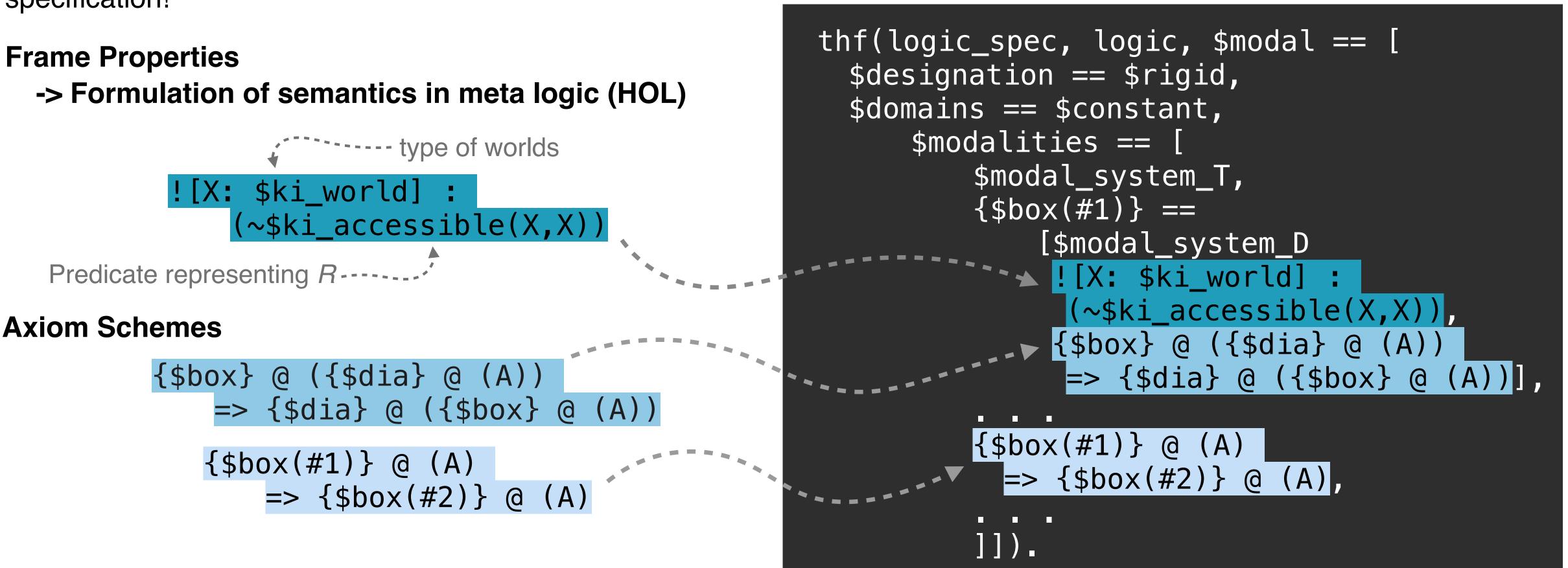
{\$box} @ ({\$dia} @ (A)) => {\$dia} @ ({\$box} @ (A)) {\$box(#1)} @ (A) => {\$box(#2)} @ (A)

2

How can we extend the TPTP syntax to account for this?

We can express axiom-schemes and frame properties in the existing syntax and include them in the logic specification!

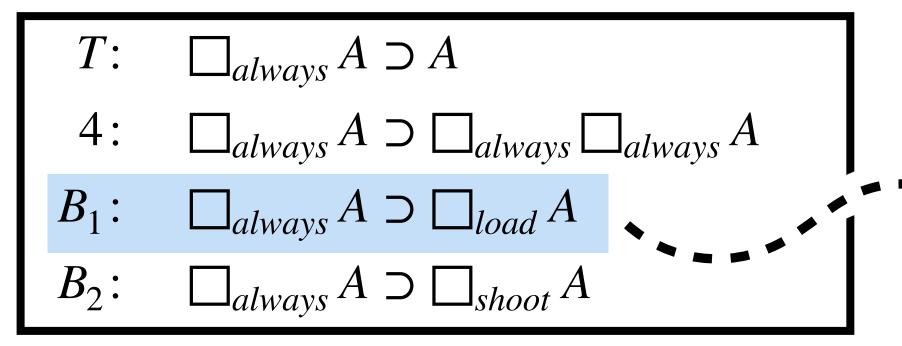
Frame Properties



Summary

- The TPTP-Syntax was extended to allowed for the representation of FOML setups characterised by arbitrary frame properties, axiom schemes and interactions
- The implementation of an embedding of such setups into HOL can be used with ATP systems to reason within these non-trivial logics (implemented in LET, Leo-III)
- Encoding problems including interactions has posed a problem
- One example is the (simplified) Yale Shooting Problem [Baldoni 1998]

Logic definition:



Reasoning problem:

- $\Box_{always} \Box_{load}$ loaded 1:
- $\Box_{alwavs} \left(loaded \supset \Box_{shoot} \neg alive \right)$ 2:

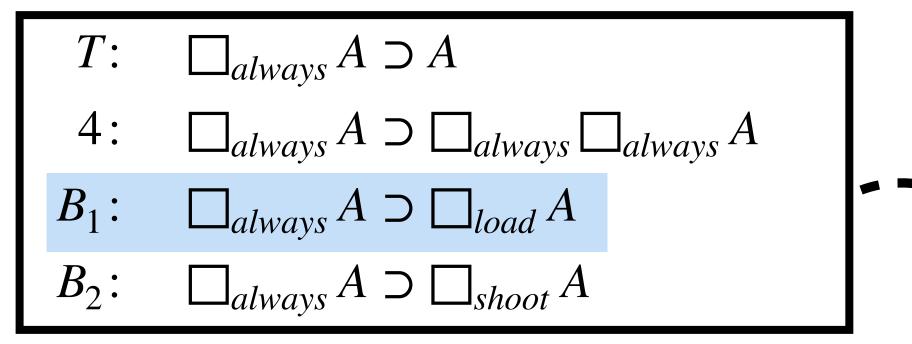
$$C: \quad \Box_{load} \Box_{shoot} \neg alive$$

Attempt at including B_1 as regular axioms in the QLMTP: [Raths, Otten, 2012]
$\Box_{always} loaded \supset \Box_{load} loaded$
$\Box_{always} \neg loaded \supset \Box_{load} \neg loaded$ $\Box_{always} alive \supset \Box_{load} alive$
$\Box_{always} \neg alive \supset \Box_{load} \neg alive$

Summary

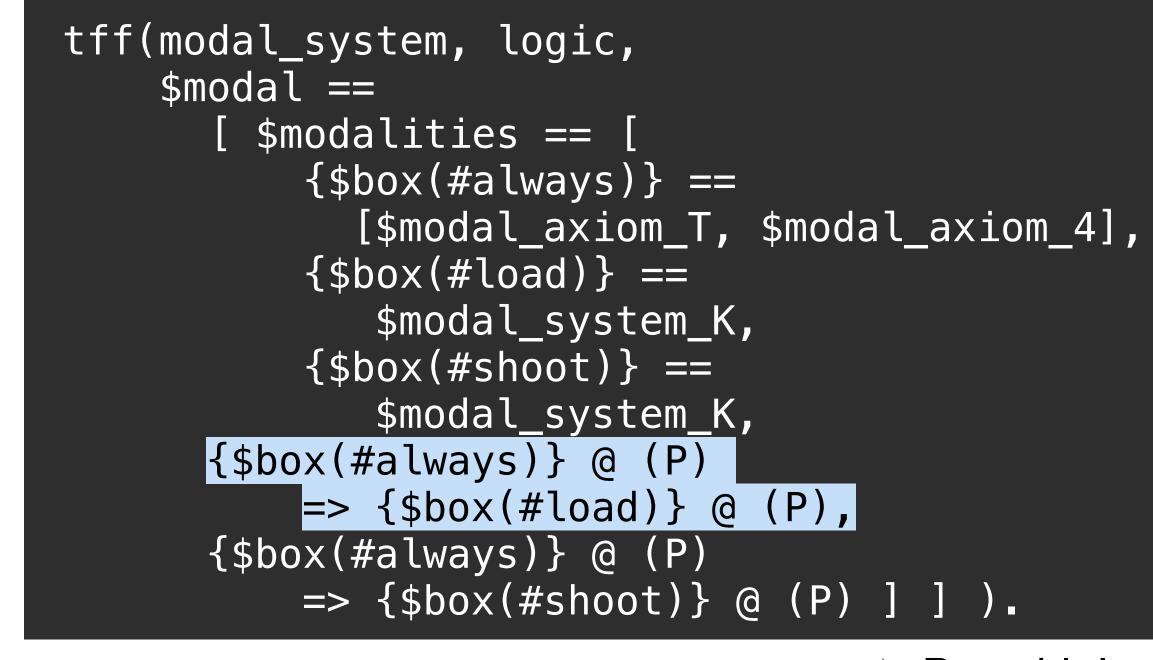
- The TPTP-Syntax was extended to allowed for the representation of FOML setups characterised by arbitrary frame properties, axiom schemes and interactions
- The implementation of an embedding of such setups into HOL can be used with ATP systems to reason within these non-trivial logics (implemented in LET, Leo-III)
- Encoding problems including interactions has posed a problem
- One example is the (simplified) Yale Shooting Problem [Baldoni 1998]

Logic definition:



Reasoning problem:

- $\Box_{always} \Box_{load}$ loaded 1:
- 2: \Box_{alwavs} (loaded $\supset \Box_{shoot} \neg alive$)
- $\Box_{load} \Box_{shoot} \neg alive$ C:
- provable version of the shown problem.



This has (up to our knowledge) not been possible in any existing ATP systems before and yielded the first

